Exercise 5-2 Probabilistic Balancing

Regarding another game players can choose between several different settings (e.g. races, classes, fractions) in the beginning. Let $s_1, ..., s_n$ be such settings.

Assume that 1000 games were monitored each between a player with settings s_1 and a player with settings s_2 (briefly s_1 vs s_2). 400 of those were won by the player with settings s_1 . Is this game fair concerning the settings s_1 and s_2 ? Therefore calculate the possibility of this observation assuming that the game was fair, i.e. that the winning chances for both players were always 50%.

Null hypothesis H_0 : p = 0.5

If H_0 holds, the number of wins is binomial distributed with p=0.5

$$\Rightarrow$$
 #wins = $B(1000, 0.5)$

General:
$$P(B(N, p) = i) = \binom{N}{i} * p^i * (1 - p)^{1000 - i}$$

Here:
$$P(B(1000,0.5) = i) = \binom{1000}{i} * 0.5^{1000}$$

Probability, that #wins ≤ 400 :

$$P(B(1000,0.5) \le 400) = \sum_{i=0}^{400} P(B(1000,0.5) = i)$$

Problem: Computation is exponential

Solution: Approximation of the binomial distribution with the gaussian distribution

Binomial distribution B(n, p)Probability mass function

Binomial distribution B(n, p)Cumulative distribution function

General overview

Expected value $\mu = n * p$

Variance $\sigma^2 = n * p * (1 - p)$

Gaussian distribution $N(\mu, \sigma^2)$ Cumulative distribution function

Here

Binomial

#wins = B(1000, 0.5)

Expected value
$$\mu = n * p$$

Variance $\sigma^2 = n * p * (1-p)$

Gaussian

 $#wins \approx N(500,250)$

 $P(B(1000,0.5) \le 400) \approx P(N(500,250) \le 400)$

Standardization of N(500,250) to enable looking for its value in a quantile table, where values for N(1,0) are listed.

$$P(N(500,250) \le 400) =$$

$$P(500 + N(0,250) \le 400) =$$

$$P(N(0,250) \le -100) =$$

$$P(N(0,1) * \sqrt{250} \le -100) =$$

$$P\left(N(0,1) \le \frac{-100}{\sqrt{250}}\right) =$$

$$P(N(0,1) \le -6.32)$$
Quantile table =>
$$P(N(0,1) \le -6.32) = 8.5 * 10^{-8}$$

Approximate probability for the observed results assuming a fair game