

Lecture Notes for Managing and Mining Multiplayer Online Games Summer Semester 2017

Chapter 9: Collaborative and Antagonistic Behavior

Lecture Notes © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter Overview

- Calculating play level from win statistics
- ELO-Ranking
- True Skill and the Microsoft-Model
- Team Skill: Taking team chemistry into account
- Outlook on network analysis in games

Models for play level

Idea: Skill level can be deduced from past victories and defeats.

Model: Every player *i* has a skill level s_i . If $s_i > s_j$ then s_i is very likely to win in a competition.

Use:

- **matchmaking**: Choosing interesting opponents with comparable skill level.
- ladders/rankings: Creating public rankings as an expression of prestige. (compare Tennis, SC2, WOW-Arena, Halo2, ...)
- **organizing tournaments**: Assistance for draw, qualification, clearing disputes.

NAME PONTB WW 1						DERS	& LAD	UES	LEAG		
No. No. <th>NUS POOL O</th> <th>BOAUS</th> <th></th> <th></th> <th colspan="7">EASON 2-1v1 GRANDMASTER</th>	NUS POOL O	BOAUS			EASON 2-1v1 GRANDMASTER						
Note Note <th< th=""><th>NB LOBS</th><th>TS WINS</th><th>PDIN</th><th></th><th></th><th></th><th>NAME</th><th>RANK</th><th></th><th></th></th<>	NB LOBS	TS WINS	PDIN				NAME	RANK			
1 3 1 Mullion 3 1 3 <							y almiwana	1.1			
1 4 a destatute 313 35 1 5 7 Adacting 311 72 1 5 7 Adacting 300 300 1 7 1 include/contracting 300 300 1 7 1 include/contracting 200 300 1 7 1 include/contracting 200 300 1 1 1 include/contracting 200 300 1 10 1 include/contracting 200 300 1 10 1 include/contracting 200 300 1 10 1 include/contracting 200 300 1 11 include/contracting 200 300 1 11 include/contracting 200 300 1 10 include/contracting 200 300 1 11 include/contracting 200 300 1 10 include/contracting 200 300 1 11 include/contracting 200 300 1 11 include/contracting 200 300 1 11 include/contracting 300 300 1 11								12	36		
I 10 I Maarona 311 73 I 6 I Maarona 300 300 300 I 7 I Maarona 300 300 300 I 7 I Maarona 300 300 300 300 I 10 I Maarona 300								13	Net .		
16 = accordator 300 17 17 Technological 229 300 300 17 19 Fedgear 229 300 100 10								1.4			
Image: Second									тор		
I 0 r drogener 200									16		
Image: Spieler Punkte Win% Leave% Total W-D-L (M-D) Image: Spieler Punkte Win% Leave% Total W-D) Image: Spieler Image: Spieler Punkte Win% Leave% Total W-D) Image: Spieler Image: Spieler Image: Spieler Image: Spieler Image: Spieler Image: Spieler Image: Spieler <td< td=""><td></td><td></td><td></td><td></td><td></td><th></th><td></td><td></td><td></td><td></td></td<>											
110 Weekly 237 1 111 Construction 232 232 112 Y veekly 232 232 113 Y veekly 232 232 114 Y veekly 231 232 113 Y veekly 232 232 114 Y veekly 231 232 113 Y veekly 231 232 231 113 Y veekly 231 232 231 114 Y veekly 232 232 231 114 Y veekly 231 232 232 114 Y veekly 232 232 232 232 232 232 232 24 15 Y veekly 25 343 YS 63% 0.0% 24 15-4 4 Scasyy 25 342 YS 54% 0.0% 30 19-1-1 5 FATAL 25 278 YS 65% 0.0% 23 15-0 0 powerhead											
11 Y nowwin 284 284 284 284 284 284 285 <											
12 Y voor/2 232 33 113 Y tecomy 292 33 113 Y tecomy 292 33 115 Y tecomy 292 33 297 202 33 291 32 297 202 202 33 291 32 297 115 Y tecomy 292 33 291 32 297 202 <td></td> <td></td> <td></td> <td></td> <td></td> <th></th> <td></td> <td></td> <td></td> <td></td>											
I 13 V R000Y IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII											
I 14 Pan IIII 200 IIIII 200 IIIII 200 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII											
Spieler Punkte Win% Leave% Total W-D-L (f . ku5h @ @ 440 VS 74% 0.0% 34 25 - 0 . KevKev @ @ @ 367 VS 53% 0.0% 43 23 - 2 - . GAMEBUG @ @ @ 343 VS 63% 0.0% 24 15 - 4 . Scasyy @ @ @ 342 VS 54% 0.0% 39 21 - 1 - . FATAL @ @ @ 337 VS 63% 0.0% 30 19 - 1 - . bueli @ @ @ 278 VS 65% 0.0% 34 19 - 1 - . powerhead @ @ @ 278 VS 56% 0.0% 34 19 - 1 -											
ku5h	- 36	87 40	3				¥ Padaon	1.15			
2. KevKev Image: Solution of the system	Leaves)	W-D-L (Le	Total	Leave%	Win%	Punkte		eler	Spi	#	
3. GAMEBUG Image: Solution of the state of the sta	- 9 (0)	25 - 0 - 9	34	0.0%	74%	440 V S	G 😌	ih	ku5	١.	
4. Scasyy Image: Scasy (Marcold Constraints) Subset (Marcold Constra) Subset (Marcold Constraints)	18 (0)	23 - 2 - 1	43	0.0%	53%	367 V S	🔁 😳	/Kev	Kev	2.	
5. FATAL Image: Solution of the system	- 5 (0)	15 - 4 - 5	24	0.0%	63%	343 V S	👩 😑	MEBUG	GA	3.	
bueli Image: Second secon	17 (0)	21 - 1 - 17	39	0.0%	54%	342 V S	C 🕑	isyy	Sca	4.	
D powerhead 6 244 VS 56% 0.0% 34 19-1- 2. bueli 6 278 VS 65% 0.0% 23 15-0	10 (0)	19 - 1 - 10	30	0.0%	63%	337 V S	6	AL	FAT	5.	
2. 🗖 bueli 👩 🎅 278 VS 65% 0.0% 23 15-0	- 8 (0)	15 - 0 - 8	23	0.0%	65%	278 V S	👩 😨	eli	🗖 bue	2	
	14 (0)	19 - 1 - 14	34	0.0%	56%	244 V S	1	verhead	pov).	
. 🗖 random 🛛 👩 🤤 216 VS 63% 0.0% 16 10-1	- 8 (0)	15 - 0 - 8	23	0.0%	65%	278 V S	<u> </u>	eli	bue	2	
	- 5 (0)	10 - 1 - 5	16	0.0%	63%	216 V S	6	dom	nan	١.	
8. 🗖 afr0 205 VS 59% 0.0% 29 17 - 0 -	12 (0)	17 - 0 - 12	29	0.0%	59%	205 V S)	afr(3.	

Letzte /	Aktualisierung 02 Jul 2008	Nächste Verö	chste Veröffentlichung 06 Aug 2008			
Rang	Team	۹ 80 اینل	+/- Rang Jun 08		+/- P Jun 08	
1	💳 Spanien	1557	3		254	
2	Italien	1404	1		-20	
3	Deutschland	1364	2	-	90	
4	Srasilien	1344	-2	-	-169	
5	Niederlande	1299	5	▲	188	
6	Argentinien	1298	-5	-	-261	
7	Kroatien	1282	8	-	265	
8	Tschechische Republik	1146	-2	-	-100	
9	Portugal	1104	2	-	10	
10	Frankreich	1053	-3	-	-90	

The ELO System

Introduced by Arpad Elo in 1970 and adopted by the *World Chess Federation*.

Assumption: player *i*'s performance p_i is normal distributed around his skill level with variance β^2 . s_i : $p_i = N(s_{i, \beta}\beta^2)$

=> s_i>s_i does not necessarily mean i is losing against j

rather: *Pr*(*i* wins against *j*) > 50%

task: compute $Pr(p_i > p_j | s_i, s_j)$ (probability of *i* playing better than *j*)

=> Difference of 2 normal distributed variables with the same variance β^2 is normal distributed with an anticipated value of $s_i - s_j$ and variance ²

Difference distribution of p_i and p_j

Let Φ be the accumulated density function of a normal distribution with anticipated value of 0 and a variance of 1, then follows:

$$P(p_1 > p_2 | s_1, s_2) = \Phi\left(\frac{s_1 - s_2}{\sqrt{2\beta}}\right)$$

Updating the ELO Ranking

- positions have to be adjusted as soon as new results are available.
- changes follow the zero-sum principle. $s_1^{new} + s_2^{new} = s_1 + s_2$
- difference Δ is supposed to increase the likelihood of the observation within the model.
- match result: $y \in \{0, -1, 1\}$ (Win:1, Loss:-1, Draw:0) updating ELO Scores with the result y_l : $\Delta = \alpha \beta \sqrt{\pi} \left(\frac{y_l + 1}{2} \Phi \left(\frac{s_1 s_2}{\sqrt{2}\beta} \right) \right)$

 α : weighing factor for a match 0< α <1 (approx. 0.07 for chess)

- ELO Scores need comparatively many matches to stabilize. (ca. 20)
- properties:
 - chronological order of updates is important: Good for long intervals between measurements, but bad performance for tournaments, where a players skill presumably stays constant.
 - ELO system does not allow for conclusions about individual performance in \bullet team games.
 - restricted representation of results. No differentiated treatment of events ۲ with a ranking for result (e.g. motor racing, ...).

True Skill

factor graphs

bi-partite graph with factor nodes and variable nodes.

- variable nodes: describe distribution functions
- factor nodes: model the interaction of variables
- edges: description of variables interacting for a factor **example**: Factor Graph for ELO System

- **True Skill**: extension of ELO Systems used for XBOX360 Live (e.g. HALO2 ranking)
- considers:
 - skill uncertainty
 - allows conclusions for team-members in team games (additive performance t₁)
 - result presentation as order of play results ($t_1 \ge t_2 \ge .. \ge t_m$)

Factor graph for True Skill

Example: 4 Players, 3 Teams: { (s_1) , (s_2, s_3) , (s_4) } Result: $t_1 > \varepsilon + t_2$, $t_1 > \varepsilon + t_3$, $\varepsilon > |t_2 - t_2|$

Factor Graph use for True Skill

- factor graph represents the distribution for Pr(s,p,t/r,A)
 - **r**: ranking result, **A**: team composition
 - **s**: player skill, **p**: player performance, **t**: team rating
- compute the distribution of player skill s conditional to the observations r and A: $Pr(s \mid r, A) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} Pr(s, p, t \mid r, A) dp dt$

 s_i is normal distributed with mean value μ_i and standard deviation σ_i

- With the given factor graph and the current values of μ and σ for the participating players $\Pi(d_1 > \varepsilon)$ and $\Pi(|d_2| \le \varepsilon)$ can be estimated.
- Comparing the prediction with the actual result, one can propagate the error back to μ and σ and adapt the model accordingly.
- Propagating probabilities and parameter updates on a factor graph are also called message-passing or belief propagation.

Training scheme for True Skill

- **1.** Forward propagation: estimate the results
- 2. Update of Team-performance: Redistribution of results to teams
- **3.** Update of a-posteriori Distributions: Propagates Update-Messages as far as Parameters μ and σ .

Discussion True Skill

- Improves the ELO Systems by:
 - Expansion of result representation
 - Converges faster using a priori distributions for particular players
 - Team Assessment
- Disadvantages of True Skill:
 - Chronological Order is important, even though one can assume that skill does not change between two matches. (Expansion: True Skill Trough Time 2008)
 - team skill is considered as the sum of player skills (In reality player synergy is much more complicated: 11 Messis ≠ world's best soccer team)

Team Skill

- idea: Considering not only individual play level, but also team chemistry.
 - => Viewing a player's joint performance compared to his single performance.

=> Some player's performance increases when combined with specific players.

given: A Team $T=\{p_1,...,p_K\}$ with K players. Let t_k be a sub-team of T with k-elements. $(t_k \subseteq T \land | t_k| = k)$. $Skill(t_k)$ constitutes sub-team's t_k skill level (for example calculated with ELO or True-Skill)

task: Skill level of team *T* considering team chemistry?

approach: Calculating average over determined sub-team ranking.

Team Skill-k

• average play level of a sub team of k size scaled to K

$$TS_{k}(T) = K \cdot \frac{1}{k} \cdot \frac{1}{\binom{K}{k}} \cdot \sum_{i=1}^{\binom{K}{k}} Skill(s_{ki}) = \frac{(k-1)!(K-k)!}{(K-1)!} \cdot \sum_{i=1}^{\binom{K}{k}} Skill(s_{ki})$$

example:
k=1 and K=5 $TS_{k}(T) = \frac{5}{1} \cdot \frac{1}{\binom{5}{1}} \cdot \sum_{i=1}^{\binom{5}{1}} Skill(s_{1i}) = \sum_{i=1}^{5} Skill(s_{1i})$

(1)
k=2 and K=5
$$TS_k(T) = \frac{5}{2} \cdot \frac{1}{\binom{5}{2}} \cdot \sum_{i=1}^{\binom{5}{2}} Skill(s_{2i}) = \frac{1}{4} \sum_{i=1}^{10} Skill(s_{2i})$$

Team Skill-AIIK-LS

Means of improvement towards Team Skill k:

- Determining *k* is hard => take all possible sub-teams.
- Seperate results do not exist for all sub-teams
 => Only consider sub-teams with a reliable ranking.
- **Idea**: Consider all sub-team with a reliable estimate and which are not sub set of a reliably estimated sub-team.
- **Approach:** Determine all relevant sub-teams $t^*_{k,i}$ whose $Skill(t_{k,i})$ can be determined and for which no sub-team $t_{k+l,j} \supset t_{k,i}$ exists.

Calculate team performance as a k-multiple of average single performance.

$$TS_{ALL-LS}(T) = \frac{K}{\sum_{m \in \{m \mid \exists t_m^* \neq \{\}\}}^{l}} \left(\sum_{m \in \{m \mid \exists t_m^* \neq \{\}\}} \left(\frac{1}{l} \cdot \sum_{i=1}^{l} Skill(t_{m,i}^*) \right) \right)$$

Example: Team Skill ALL-LS

rot: pruned Area, blau: used sub-teams, grey: pruned sub-teams.

$$TS_{ALL-LS}(T) = \frac{4}{3+2} \left(Skill(t_{BCD}) + \frac{1}{2} \left(Skill(t_{AC}) + Skill(t_{AD}) \right) \right)$$

Conclusion

- method for capturing increased success of teams with good chemistry.
- team skill depends on data of as many different team compositions as possible
- approaches for improvement:
 - roles within the team are not required explicitly
 - confidence of the underlying skill estimation is not treated
 - correlation between team skill and player skill is assumed to be uniform
- Skill in Team Skill, True Skill and ELO symmetrically values win and loss.

=> in many casual games an win award more increase to player score than losses reduces the skill level (keep players motivated to play)

Alternative Approach

- Rating players not by success, but by his behavior matching a successful player's behavior:
 - 1. collect and describe spatial-temporal behavior over the full spectrum of Skill.
 - 2. learn a regression model.
 - 3. rate player, while playing, for his *k* last actions.
- this approach is used for dynamic play level adjustment in PVE.
- very suitable if it is known what constitutes successful behavior in the game. (e.g. accuracy in FPS Games, DPS/HPS Numbers in MMORPGS)

Network Analysis in Games

- Many MMO-games include analyzable social structures: Who plays with whom and for how long?
- modeling team-strategies
- response profile to an opponent's actions
- finding criminal associations (e.g. gold-farmer trusts)
- tools to create pick-up groups

Learning goals

- Scope of application for player ranking and matchmaking
- ELO
- True Skill
- Team Skill

Literature

- A.E. Elo: **The Rating of chess players: Past and present,** Arco Publishing, New York, 1978.
- Pierre Dangauthier, Ralf Herbrich, Tom Minka, Thore Graepel TrueSkill Through Time: Revisiting the History of Chess, In Advances in Neural Information Processing Systems 20 (NIPS), 2008.
- Ralf Herbrich, Tom Minka, and Thore Graepel, TrueSkill(TM): A Bayesian Skill Rating System, in Advances in Neural Information Processing Systems 20, MIT Press, January 2007.
- Colin DeLong, Nishith Pathak, Kendrick Erickson, Eric Perrino, Kyong Shim, Jaideep Srivastava:**TeamSkill: Modeling team chemistry in online multi-player games,** on Proc. of the 15th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD2011), 2011.