
1

Lecture Notes for
Managing and Mining Multiplayer Online Games

Summer semester 2017

Lecture Notes © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter 9: Spatial behavior models

2

Chapter Overview

• spatial data mining in games
• visual analytics and heat maps
• spatial outliers
• trajectories: representation and similarity
• pattern search on trajectory data

3

Spatial Data Mining and Games
• many games take place in a

virtual 2D-/3D-World
• movement and position is often

an important part of game play
• game world design is relevant

for balancing
• analysis of spatial and spatial-

temporal information is referred
to as Spatial Data Mining

4

Tasks of Spatial Game Analytics
• find exploitation spots
• extract game moves and

movement strategies
• encounter detection (open PVP)
• sub team recognition
• dynamic adjustment of respawn times
• detect bot and multiboxers
• detect movement and teleportation hacks

⇒ find specific places
(heat-maps, spatial outliers)

⇒ find movement patterns (trajectory mining)

5

Spatial Data and Visualization
• spatial data consists of object descriptions and positions.

(Example: Marine, 43,56)
• to find special places, object descriptions

are aggregated w.r.t. positions
(e.g. number of kills at a position, monster’s spawn
frequency at a place)

• spatial continuity: usually one assumes adjacent
positions to behave in a similar fashion.

⇒ presentation of aggregated information
in 2D histograms (bin counting)

⇒ presentation of spatial continuity with
smoothing approach (kernel density estimation)

6

Heat Maps

• visualizing the distribution of events on X-,Y-
coordinates of a map.

• displaying the distribution as a 2D-Density
distribution.

• a bin’s height is encoded with it’s color.

simple algorithm: Bin Counting
1. place uni-distance Grid overlay on the map
2. for every event

1. determine grid cell
2. increase grid cell counter by 1

3. draw the grid and color each cell matching the
number within.

3
10

11 11 14
9

5

3
10

11 11 14
9

5
0

4
2

6

10

8

12

14

7

Heat Maps

Problems with bin counting:
• setting grid-size:

• too small: torn view, few dense areas
• too big: rough view, few differences

• grid position influences result
• spatial continuity may be hardly discernible

Remedy: smooth curves with kernel density estimation
estimate density with the sum of kernel functions
⇒ continuous and smoothed density function
⇒ discretization of data only for drawing

3
10

9

5

3

9

5

8

Kernel density estimator

• method to estimate a continuous density function from a sample set X.
• consider density p(t) as mixture model of |X| distributions, all of them

distributed with kernel function K(t):

• common kernel functions:

• Gauss-kernel :

• Cauchy-kernel:

• Picard-kernel :

• Epanechnikow-kernel:

∑
∈

−=
Xt

xtK
X

xp)(1)(

()






 −

=
2

2
1

2
1 t

etK
π

() ()21
1

t
tK

+
=
π

())(

2
1 tetK −=

()
() []







 −∈−
=

sonst

tfallst
tK

0

1;1,1
4
3 2

9

Heatmaps with kernel density estimators

• kernels in 2D-Space assuming
independent dimensions:

• every bin corresponds to one pixel
• for every pixel P, p(m) is calculated

based on pixel center m
• for efficient calculation:
for all points x:

for all pixel p:
for both dimensions:

increase the value of p
by K(x-pm) with pm center of p











−⋅










−= ∑∑

∈∈ XxXx
xtK

X
xtK

X
tp)(1)(1)(2211

10

Spatial Data Mining

• particular data mining methods for spatial objects.
• object O consists of a spatial component p ∈ IR2/IR3 and an object

description v ∈ F. (F is an arbitrary feature space)
• special tasks in spatial data mining:

• Spatial Outlier Detection: find places where the feature descriptions significantly
varies from the object description of close objects.

(Example: exploitation spots where you can not be hit.)
• Spatial Prediction: prediction of areas where certain phenomena are more

frequent. (Example: calculate the probability of a certain behavior occurring at a
certain spot.)

• Spatial Clustering: Clustering using proximity as well as similarities of the feature
space to create or differentiate clusters.

(Example: Are any actions frequently taken at certain areas of the map?)
• Spatial Rule Mining: Derivation of association rules based on frequent spatial

patterns. (Example: 80% of cities built within 50 km of another players settlement
do not survive until the end of the game.)

11

Spatial Outlier Detection

Given: A set DB of spatial objects O = (p,v).
Searched: Objects that are unusual for their neighborhood.

General procedure:
1. Determine neighborhood N for every object O.

(e.g N consists of k closest neighbors of O).
2. Compare the feature description of O.v with the distribution of

feature descriptions in N.

12

Spatial Outlier Detection

Point Outlier Detection (POD):
1. set up a nearest neighbor graph

G(DB,E) for spatial positions.
E:= {(oi,oj)| oi,oj ∈ DB ∧ oj ∈ NNk(oi)}
weighting function:
w(oi,oj) = || oi .v -oj .v||

2. sort E by w(oi,oj) in descending order
3. while |R| < m

(m outliers not found yet)
1. remove the edge (oi,oj) with max.

weight w(oi,oj)
2. if oi is isolated, insert oi into the

result R

2
3

3

3
4

1
4

7
8

4 4
4

9 3

13

Example POD

2
3

3

3
4

1
4

7
8

4 4
4

9 3

2
3

3

3
4

1
4

7
8

4 4
4

3

2
3

3

3
4

1
4

7

4 4
4

3

2
3

3

3
4

1
4

4 4
4

3

R={…}

14

Trajectories
• trajectories describe a movement through space

(time series of spatial positions)
• spatial trajectory: Q=(x1, …, xl)∈ IR2×…×IR2

is known as spatial trajectory of length l over IR2.
• spatial-temporal trajectory: Let T be a domain

to present time, then
Q=((x1, t1),.., (xl, tl))∈ (IR2×T)×..×(IR2×T)
is a spatial-temporal trajectory of length l over IR2.

• alternatively trajectories can be described relatively to a
starting position.

• movement is continuous: to get a continuous
path, the movement between two positions is
assumed to be linear and to be traversed with
constant speed.

go , go, turn left, go, turn
right, go, turn right, go,
turn left, go, turn right,
go

15

Distance Measure for Trajectories

• point to trajectory: Given p∈IR2 and trajectory
Q=((x1,t1), …, (xl,tl)) :

• trajectory to trajectory: Given Q=((x1,t1), …, (xl,tl))
and P= ((y1,t‘1), …, (yl,t‘l)):
Closest Pair Distance:

Sum-of-Pairs:

),(min),(
),(

xpdQpD
Qtx ∈

=

),(min),(
),(,),(' ji

QtyQtx
yxdPQCPD

jjii ∈∈
=

∑
=

=
n

i
ii yxdPQSPD

1
),(),(

16

Distance Measures for Trajectories
• for different lengths: DTW (See Chapter 8)

but: DTW is susceptible to outliers.
• longest common sub-sequence (similarity measure!)

LCSS (Longest Common Sub-Sequence):

• ε : threshold for position matching, δ max. shift
• calculation byrecursion













<−∧≤+

=∨=

=
sonstPQLCSSPQLCSS

mnPHeadQHeaddfallsPQLCSS

mnfalls

PQLCSS
)),(Rest,(),),(Rest(max(

))(),(()),(Rest),(Rest(1

00,0

),(δε

17

LCSS Similarity

• LCSS(P,Q) only counts the length of the longest commons sub-
sequence up to now, but is not normalized yet:

• similiarity does not yet take the translation of trajectories into
account
(translation: Shifting all positions by a fixed vector):
Let F be the set of all translations and f(Q) F one translation:

()QP
QPLCSSQPS

,min
),(),,,(1 =εδ

()[])(,,,1max),,,(2 QfPSQPS
Ff

εδεδ
∈

=

18

Compressing trajectories

characteristics of trajectories in games:
• high resolution (ca. 20-30 points/s)
• no measuring errors for positions
• velocity gradation is usually steady and movement is often linear.

problems: resolution is often too high and redundant
• extremely high memory requirement
• comparisons become very expensive

(e.g., all DTW based measures are square)

spproach: reduce waypoints
⇒ compression by omitting waypoints
⇒ good methods minimize approximation errors

19

Douglas-Peucker Algorithm
Given: A trajectory Q=((x1,t1), …, (xl,tl)) of l length.
Searched: Q‘ with | Q‘ |<< l and approximation error smaller than δ .
Algorithm:

DP(Q, δ)
Q‘ = ((x1,t1), (xl,tl))
FOR ALL (xi,ti) in Q

IF Error(xi, Q‘)> δ THEN
determine x* with max(Error(xi, Q‘))
(Q1,Q2) = split(Q,x*)
RETURN DP(Q1, δ) DP(Q2, δ)

ENDFOR
RETURN Q‘

Error(xi, Q‘))

Q‘
Q1

Q2
x*

20

Compressing with Speed and Direction

• Consider last 2 waypoints qi-2, qi-1 and calculate movement direction
and speed

• extrapolate next waypoint qi-1+ di vi(ti+1-ti) and test:
If |vi(ti-ti-1) - (qi-qi-1)| and

delete qi

else
go to i+1

deleted waypoints

α≤
−⋅
−

−

−

1

1,

iii

iii

qqd
qqd

12

12

−−

−−

−
−

=
ii

ii
i qq

qqd
12

12

−−

−−

−
−

=
ii

ii
i tt

qq
v

21

Pattern Search in Trajectories

• like other objects, trajectories can be analyzed with distance based
data mining (z.B. OPTICs) and corresponding distance measures
(LCSS).

• but resulting patterns consist of globally similar trajectories.

• many interesting trajectory patterns rest on a relative small part of the
trajectory.

• interesting patterns usually have spatial constraints.

=> special pattern search methods for trajectories

22

Continuous Flocks

Idea: Find objects that share a path
for a certain time interval.

Example: subteams in games, convoys,…

Definition: Continuous (m,k,r)-Flock
Let DB be a set of trajectories of length l, a Flock
within the time interval I=[ti,tj] where j-i+1 ≥ k
consists of at least m objects, so that a disc with
radius r, enclosing all m objects, exists in I.

Remark: Calculating the flock with the longest
duration and the flock with the largest subset are
NP-hard problems.
=> solutions are complex or only approximate

flock

23

Flocks with discreet Time

Definition: discreet (m,k,r)-Flock
Let DB be a set of trajectories of l length, a Flock in I=[ti,tj] with j-i+1≥ k
consists of at least m objects, so that a disc with radius r, enclosing all
m objects, exists for each discrete time tl where i≤ l ≤ j .

• Lemma: If objects move with constant speed and on a direct line
between waypoints, discrete and continuous flocks are equivalent.

• Advantage: Turning a continuous problem to a discrete one.
But: Complexity remains unchanged and comes from the
combination of possible subsets.

The possible number of flocks with m elements is:)1(
||

+−⋅






 kl
m

DB

24

Searching for Flocks

Procedure encompasses 2 subtasks:
1. Find all discs of radius r, containing at least m

points for time ti.
=> sequence of subsets of DB
=> one trajectory may be present in several

subsets.

2. Find sequence (S(ti), …,S(tj)) of discs S(tl) for the
points in time tl with i≤ l ≤ j for which the
following condition holds:

possible successor

Flock

mtS
jli

l ≥
≤≤
)(

25

Find all Discs for the Point in Time t
Discs(ti)
build grid index I for DBi

FOR ALL non-empty cells gx ∈ I DO
Pr = gx
Ps= NeighborCells(gx)
IF |Ps| ≥ m THEN
FOR EACH pr ∈ Pr DO
H=Range(pr,2r)
FOR each pj ∈ H DO

IF not computed {pr,pj } THEN
compute disks {c1,c2} from {pr,pj }
FOR EACH disk ck ∈ {c1,c2} DO

c = ck∩ H
IF |c|≥ m THEN

C.add(c)
RETURN C

2r

r

r c1

c2

26

Finding (m,k,r)-Flocks
Continuous Refinement Evaluation (CRE)
CRE(DB,k)
FOR EACH point in time ti DO

L: Trajectories in time interval ti-k to ti
C1 = Disks(L[ti-k]) // all containing trajectories in L at ti-k
F = {} // results flocks
FOR EACH c1 ∈ C1 DO // for each start disc

L‘[1] = trajectories in c1
F1 = c1, Ft = {}
FOR t = 2 to k DO // for the next k-1 times

Ct = Disks(L‘[t])
Ft = {}
FOR EACH c ∈ Ct DO // for all disc at time t

FOR EACH f ∈ Ft-1 DO // for currently valid flocks
IF |c∩f| ≥ m THEN

Ft =Ft ∪{c∩f} // extend the flock by one point in time
IF |Ft| =0 THEN

BREAK
F=F ∪ Ft

RETURN F

27

Meets (Encounter)

Idea: Find objects that stay together in an area
for a certain time.

Examples: Encounter, Combat.

Definition: (m,k,r)-Meet
Let DB be a set of trajectories of length l, a meet
within the time interval I=[ti,tj] with j-i+1≥ k
consists of at least m objects, so that for every
point in time ti∈I all m objects lie within a disc of
radius r and center point M.

Remarks: Calculating meets is easier than
calculating flocks because for two consecutive
points in time only the discs positions, not their
trajectories, must be analyzed.

meet

28

Encounter Detection

Idea: To find out where a team succeeded /failed and find
the decisive moments in a game.
• in Dota2 defeating enemy heroes grants the

biggest advantage in gold/XP
• find situations where this was possible or succeeded

=> Encounters

Encounter characteristics
• encounters represent only a portion of the game
• encounters can happen simultaneously
• often only sub teams are involved in encounters

29

Defining Encounters

Idea: Fights happen when opponents can influence each other.
• opponents have to be in fighting range
• each hero unit might have an individual attack range
• heroes can support (e.g. heal) a friendly unit

Which kind of information is necessary?
• Spatial position and unit type for each controlled hero unit
• Attack and support ranges for all units types

30

Encounter Situations

• Combat link: 2 hero units from different
teams A and B. Either A can attack B or
vice versa

• Support link: 2 hero units from the same
team A and B. Either A can support B or
vice versa

• Each hero type has individual attack and
support ranges (Ranges are mean values
plus to standard deviations)

• Component Graph: Connected Graph
build by Combat/support Links

31

Encounter Situations

Formally…

Definition: Combat Component
• units U and the union 𝐸𝐸𝑑𝑑 = 𝐶𝐶𝐶𝐶 ∪ 𝑆𝑆𝑆𝑆 of combat links CL and

support links SL between the units in U.

• 𝐸𝐸𝑢𝑢 = 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 ∈ 𝐸𝐸𝑑𝑑 ∨ 𝑢𝑢𝑗𝑗 ,𝑢𝑢𝑖𝑖 ∈ 𝐸𝐸𝑑𝑑
• situation graph 𝐺𝐺(𝑈𝑈,𝐸𝐸𝑢𝑢).

• combat component C: connected subgraph 𝐺𝐺(�𝑈𝑈, �𝐸𝐸) of
𝐺𝐺(𝑈𝑈,𝐸𝐸𝑢𝑢) where �𝑈𝑈 ⊆ 𝑈𝑈, �𝐸𝐸 ⊆ �𝑈𝑈 × �𝑈𝑈
and ∀𝑢𝑢1,𝑢𝑢𝑙𝑙 ∈ �𝑈𝑈:∃ 𝑢𝑢1,𝑢𝑢2, . .𝑢𝑢𝑙𝑙
where 𝑖𝑖 ∈ {1, . . , 𝑙𝑙}: (𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖+1) ∈ �𝐸𝐸

and ∃𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 ∈ �𝑈𝑈:𝑢𝑢1. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≠ 𝑢𝑢2. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.

32

Defining Encounters

t1 t2 t3 t4

• Component Graphs describe an Encounter at tick t
• An encounter usually lasts multiple consecutive ticks

• Hero Units can join encounters

• Hero Units might be defeated or leave

• Encounters can split

• Encounters can join

33

Defining Encounters

Formally…

Definition: Successor
Given a set of components CSt={ C1,t ,… ,Cl,t } describing
encounter E at tick t. Let 𝜏𝜏 be a timeout threshold. A
component 𝐶𝐶𝑡𝑡+𝛥𝛥𝛥𝛥is a successor of CSt denoted as 𝐶𝐶𝑆𝑆𝑡𝑡 →
𝐶𝐶𝑡𝑡+𝛥𝛥𝛥𝛥if the following conditions hold:

• 𝛥𝛥𝛥𝛥 ≤ 𝜏𝜏
• ∃𝑢𝑢1,𝑢𝑢2 ∈ 𝐶𝐶𝑡𝑡+𝛥𝛥𝛥𝛥:∃𝐶𝐶𝑖𝑖,𝑡𝑡 ∈ 𝐶𝐶𝑆𝑆𝑡𝑡:𝑢𝑢1 ∈ 𝐶𝐶𝑖𝑖,𝑡𝑡 ∧ 𝐶𝐶𝑗𝑗,𝑡𝑡 ∈ 𝐶𝐶𝑆𝑆𝑡𝑡:𝑢𝑢2 ∈ 𝐶𝐶𝑗𝑗,𝑡𝑡 ∧
𝑢𝑢1. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≠ 𝑢𝑢2. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

34

Defining Encounters

Formally….

Definition: Encounter
An encounter is a sequence (CS0,.., CS,l) of lists of
components CSi where the following condition holds:
∀𝐶𝐶𝑖𝑖,𝑡𝑡 ∈ 𝐶𝐶𝑆𝑆𝑡𝑡:𝐶𝐶𝑆𝑆𝑡𝑡−1 → 𝐶𝐶𝑖𝑖,𝑡𝑡 with 𝑡𝑡 ∈ {1, . . , 𝑙𝑙}.

35

Encounter Detection

What is the input data ?
• hero type (combat range, support range), team
• time series of position updates (one at a time)

Algorithm:
• initialize hero information
• stream over position updates and update distances
• for each player movement process the impact to the

current component graphs
• keep lists of open encounters
• move encounters to a closed set if they time out

36

The Algorithm

Encounter Detection (position_stream)
While position_stream.hasNext():

component = build_component(unit,distance_table)
If component is combat component:

compute predecessors(component, open_encounters)
If predecessors.size() == 0:

open_encounters.add(new Encounter(component)
If predecessors.size() == 1:

predecessors.get(1).update(component)
If predecessors.size() >1:

open_encounters.join(predecessors,component)
For encounter in open_encouters:

If encounter has timeout:
move encounter from open_encounter to closed_encounters

For encounter in open_encouters:
move encounter from open_encounter to closed_encounters

return closed_encounters

37

An Example Encounter

38

An Example Encounter (Detailed View)

1 2 3 4

5 6 7 8

39

Learning Goals

• use cases for spatial game analytics
• heat maps with bin counting and kernel density estimation
• tasks of spatial data mining
• spatial outlier detection with POD
• trajectories, relative and absolute trajectories
• comparing trajectories (LCSS)
• compressing trajectories
• pattern search in trajectories

• definition of flocks
• calculation of flocks
• definition of meets
• encounter detection

40

Literature
• Marcos R. Vieira, Petko Bakalov, and Vassilis J. Tsotras. 2009. On-line discovery of flock

patterns in spatio-temporal data. In Proc of the 17tthACM SIGSPATIAL Int. Conf. on
Advances in Geographic Information Systems (GIS '09). ACM, New York, NY, USA, 286-295.

• Yu Zheng, Xiaofang Zhou: Computing with Spatial Trajectories, Springer, 2011.
• Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. Reporting flock

patterns. Comput. Geom. Theory Appl. 41, 3 (November 2008), 111-125.
• Anders Drachen, Alessandro Canossa : Evaluating Motion: Spatial User Behavior in

Virtual Environments International Journal of Arts and Technology, 4(3): 1--21, 2011.
• H.K. Pao, K.T. Chen, H.C. Chang: Game Bot Detection via Avatar Trajectory Analysis

Computational Intelligence and AI in Games, IEEE Transactions on, 2(3): 162--175, 2010.
• Jehn-Ruey Jiang, Ching-Chuan Huang, Chung-Hsien Tsai: Avatar Path Clustering in

Networked Virtual Environments In Proceedings of the 2010 IEEE 16th International
Conference on Parallel and Distributed Systems, 2010.

• C. Thurau, C. Bauckhage, G. Sagerer: Learning human-like movement behavior for
computer games, In From animals to animats 8: Proceedings of the 8th International
Conference on Simulation of Adaptive Behavior, 2004.

• Yufeng Kou, Chang-Tien Lu, Raimundo F. Dos Santos: Spatial Outlier Detection: A Graph-
Based Approach, 19th IEEE International Conference on Tools with Artificial Intelligence ,
pp. 281-288, Vol.1 (ICTAI 2007), 2007.

• Shekhar, Shashi and Schrater, Paul and Vatsavai, Ranga Raju and Wu, Wei Li and Chawla,
Sanjay. Spatial Contextual Classification and Prediction Models for Mining Geospatial
Data. IEEE Transactions on Multimedia. 4(2):174-188, 2002.

	Chapter 9: Spatial behavior models�
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40

