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Chapter Overview

• spatial data mining in games
• visual analytics and heat maps
• spatial outliers
• trajectories: representation and similarity
• pattern search on trajectory data
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Spatial Data Mining and Games
• many games take place in a 

virtual 2D-/3D-World
• movement and position is often 

an important part of game play
• game world design is relevant 

for balancing
• analysis of spatial and spatial-

temporal information is referred 
to as Spatial Data Mining
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Tasks of Spatial Game Analytics
• find exploitation spots
• extract game moves and

movement strategies
• encounter detection (open PVP)
• sub team recognition
• dynamic adjustment of respawn times
• detect bot and multiboxers
• detect movement and teleportation hacks

⇒ find specific places
(heat-maps, spatial outliers)

⇒ find movement patterns (trajectory mining)
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Spatial Data and Visualization
• spatial data consists of object descriptions and positions.

(Example: Marine, 43,56)
• to find special places, object descriptions

are aggregated w.r.t. positions
(e.g. number of kills at a position,  monster’s spawn 
frequency at a place)

• spatial continuity: usually one assumes adjacent
positions to behave in a similar fashion.

⇒ presentation of aggregated information
in 2D histograms (bin counting)

⇒ presentation of spatial continuity with
smoothing approach (kernel density estimation)
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Heat Maps

• visualizing the distribution of events on X-,Y-
coordinates of a map.

• displaying the distribution as a 2D-Density 
distribution.

• a bin’s height is encoded with it’s color.

simple algorithm: Bin Counting
1. place uni-distance Grid overlay on the map
2. for every event

1. determine grid cell
2. increase grid cell counter by 1

3. draw the grid and color each cell matching the 
number within.
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Heat Maps

Problems with bin counting:
• setting grid-size:

• too small: torn view, few dense areas
• too big: rough view, few differences 

• grid position influences result
• spatial continuity may be hardly discernible

Remedy: smooth curves with kernel density estimation
estimate density with the sum of kernel functions
⇒ continuous and smoothed density function
⇒ discretization of data only for drawing
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Kernel density estimator

• method to estimate a continuous density function from a sample set X.
• consider density p(t) as mixture model of |X| distributions, all of them 

distributed with kernel function K(t):

• common kernel functions:

• Gauss-kernel :

• Cauchy-kernel: 

• Picard-kernel :

• Epanechnikow-kernel:
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Heatmaps with kernel density estimators

• kernels in 2D-Space assuming 
independent dimensions:

• every bin corresponds to one pixel
• for every pixel P, p(m) is calculated

based on pixel center m
• for efficient calculation:
for all points x:

for all pixel p: 
for both dimensions:

increase the value of p
by K(x-pm) with pm center of p
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Spatial Data Mining

• particular data mining methods for spatial objects.
• object O consists of a spatial component p ∈ IR2/IR3 and an object 

description v ∈ F. (F is an arbitrary feature space)
• special tasks in spatial data mining:

• Spatial Outlier Detection: find places where the feature descriptions significantly 
varies from the object description of close objects.

(Example: exploitation spots where you can not be hit.)
• Spatial Prediction: prediction of areas where certain phenomena are more 

frequent. (Example: calculate the probability of a certain behavior occurring at a 
certain spot.)

• Spatial Clustering: Clustering using proximity as well as similarities of the feature 
space to create or differentiate clusters.

(Example: Are any actions frequently taken at certain areas of the map?)
• Spatial Rule Mining: Derivation of association rules based on frequent spatial 

patterns. (Example: 80% of cities built within 50 km of another players settlement 
do not survive until the end of the game.)
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Spatial Outlier Detection

Given: A set DB of spatial objects O = (p,v).
Searched: Objects that are unusual for their neighborhood.

General procedure:
1. Determine neighborhood N for every object O.

(e.g N consists of k closest neighbors of O).
2. Compare the feature description of O.v with the distribution of 

feature descriptions in N.



12

Spatial Outlier Detection

Point Outlier Detection (POD):
1. set up a nearest neighbor graph 

G(DB,E) for spatial positions.
E:= {(oi,oj)| oi,oj ∈ DB ∧ oj ∈ NNk(oi)}
weighting function: 
w(oi,oj) = || oi .v -oj .v||

2. sort E by w(oi,oj) in descending order
3. while |R| < m

(m outliers not found yet)
1. remove the edge (oi,oj) with max. 

weight w(oi,oj)
2. if oi is isolated, insert oi into the 

result R
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Example POD
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Trajectories
• trajectories describe a movement through space

(time series of spatial positions)
• spatial trajectory: Q=(x1, …, xl)∈ IR2×…×IR2 

is known as spatial trajectory of length l over IR2.
• spatial-temporal trajectory: Let T be a domain

to present time, then
Q=((x1, t1),.., (xl, tl))∈ (IR2×T)×..×(IR2×T)
is a spatial-temporal trajectory of length l over IR2.

• alternatively trajectories can be described relatively to a 
starting position.

• movement is continuous: to get a continuous
path, the movement between two positions is
assumed to be linear and to be traversed with
constant speed.

go , go, turn left, go, turn 
right, go, turn right, go, 
turn left, go, turn right, 
go
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Distance Measure for Trajectories

• point to trajectory: Given p∈IR2  and trajectory
Q=((x1,t1), …, (xl,tl)) :

• trajectory to trajectory: Given Q=((x1,t1), …, (xl,tl)) 
and P= ((y1,t‘1), …, (yl,t‘l)):
Closest Pair Distance:

Sum-of-Pairs:
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Distance Measures for Trajectories
• for different lengths: DTW (See Chapter 8)

but: DTW is susceptible to outliers.
• longest common sub-sequence (similarity measure!)

LCSS (Longest Common Sub-Sequence):

• ε : threshold for position matching, δ max. shift
• calculation byrecursion
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LCSS Similarity

• LCSS(P,Q) only counts the length of the longest commons sub-
sequence up to now, but is not normalized yet:

• similiarity does not yet take the translation of trajectories into 
account
(translation: Shifting all positions by a fixed vector):
Let F be the set of all translations and f(Q) F one translation:
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Compressing trajectories

characteristics of trajectories in games:
• high resolution (ca. 20-30 points/s)
• no measuring errors for positions 
• velocity gradation is usually steady and movement is often linear.

problems: resolution is often too high and redundant
• extremely high memory requirement
• comparisons become very expensive

(e.g., all DTW based measures are square)

spproach: reduce waypoints
⇒ compression by omitting waypoints
⇒ good methods minimize approximation errors
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Douglas-Peucker Algorithm
Given: A trajectory Q=((x1,t1), …, (xl,tl)) of l length.
Searched: Q‘ with | Q‘ |<< l and approximation error smaller than δ .
Algorithm:

DP(Q, δ )
Q‘ = ((x1,t1), (xl,tl))
FOR ALL  (xi,ti) in Q

IF  Error(xi, Q‘)> δ THEN
determine  x* with max(Error(xi, Q‘))
(Q1,Q2) = split(Q,x*)
RETURN  DP(Q1, δ ) DP(Q2, δ)

ENDFOR
RETURN Q‘

Error(xi, Q‘))

Q‘
Q1

Q2
x*
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Compressing with Speed and Direction

• Consider last  2 waypoints qi-2, qi-1 and calculate movement direction 
and speed

• extrapolate next waypoint qi-1+ di vi(ti+1-ti) and test:
If |vi(ti-ti-1) - (qi-qi-1)| and

delete qi

else
go to i+1

deleted waypoints
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Pattern Search in Trajectories

• like other objects, trajectories can be analyzed with distance based 
data mining (z.B. OPTICs) and corresponding distance measures 
(LCSS).

• but resulting patterns consist of globally similar trajectories.

• many interesting trajectory patterns rest on a relative small part of the 
trajectory.

• interesting patterns usually have spatial constraints.

=> special pattern search methods for trajectories



22

Continuous Flocks

Idea: Find objects that share a path
for a certain time interval. 

Example: subteams in games, convoys,…

Definition: Continuous (m,k,r)-Flock
Let DB be a set of trajectories of length l, a Flock 
within the time interval I=[ti,tj] where j-i+1 ≥ k
consists of at least m objects, so that a disc with 
radius r, enclosing all m objects, exists in I.

Remark: Calculating the flock with the longest 
duration and the flock with the largest subset are 
NP-hard problems.
=> solutions are complex or only approximate

flock
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Flocks with discreet Time

Definition: discreet (m,k,r)-Flock
Let DB be a set of trajectories of l length, a Flock in I=[ti,tj] with j-i+1≥ k 
consists of at least m objects, so that a disc with radius r, enclosing all 
m objects, exists for each discrete time tl where i≤ l ≤ j .

• Lemma: If objects move with constant speed and on a direct line 
between waypoints, discrete and continuous flocks are equivalent.

• Advantage: Turning a continuous problem to a discrete one.
But: Complexity remains unchanged and comes from the 
combination of possible subsets. 

The possible number of flocks with m elements is: )1(
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Searching for Flocks

Procedure encompasses 2 subtasks:
1. Find all discs of radius r, containing at least m

points for time ti.
=>  sequence of subsets of DB
=>  one trajectory may be present in several

subsets.

2. Find sequence (S(ti), …,S(tj)) of discs S(tl) for the 
points in time tl with i≤ l ≤ j for which the 
following condition holds:

possible successor

Flock

mtS
jli

l ≥
≤≤
 )(
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Find all Discs for the Point in Time t
Discs(ti)
build grid index I for DBi

FOR ALL non-empty cells gx ∈ I DO
Pr = gx
Ps= NeighborCells(gx)
IF |Ps| ≥ m THEN
FOR EACH pr ∈ Pr DO
H=Range(pr,2r)
FOR each pj ∈ H DO

IF not computed {pr,pj } THEN
compute disks {c1,c2} from {pr,pj } 
FOR EACH disk ck ∈ {c1,c2}  DO

c = ck∩ H
IF |c|≥ m THEN

C.add(c)
RETURN C

2r

r

r c1

c2
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Finding (m,k,r)-Flocks
Continuous Refinement Evaluation (CRE)
CRE(DB,k)
FOR EACH point in time ti DO

L: Trajectories in time interval ti-k to ti
C1 = Disks(L[ti-k]) // all containing trajectories in L at ti-k
F = {} // results flocks
FOR EACH c1 ∈ C1 DO // for each start disc

L‘[1] = trajectories in c1
F1 = c1, Ft = {}
FOR t = 2 to k DO // for the next k-1 times

Ct = Disks(L‘[t])
Ft = {}
FOR EACH c ∈ Ct DO //  for all disc at time t

FOR EACH f ∈ Ft-1 DO // for currently valid flocks
IF |c∩f| ≥ m THEN

Ft =Ft ∪{c∩f} // extend the flock by one point in time
IF |Ft| =0 THEN

BREAK
F=F ∪ Ft

RETURN F
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Meets (Encounter)

Idea: Find objects that stay together in an area 
for a certain time.

Examples: Encounter, Combat.

Definition: (m,k,r)-Meet
Let DB be a set of trajectories of length l, a meet 
within the time interval I=[ti,tj] with j-i+1≥ k
consists of at least m objects, so that for every 
point in time ti∈I all m objects lie within a disc of 
radius r and center point M.

Remarks: Calculating meets is easier than 
calculating flocks because for two consecutive 
points in time only the discs positions, not their 
trajectories, must be analyzed.

meet
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Encounter Detection

Idea: To find out where a team succeeded /failed and find 
the decisive moments in a game.
• in Dota2 defeating enemy heroes grants the

biggest advantage in gold/XP
• find situations where this was possible or succeeded

=> Encounters

Encounter characteristics
• encounters represent only a portion of the game
• encounters can happen simultaneously
• often only sub teams are involved in encounters
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Defining Encounters

Idea: Fights happen when opponents can influence each other.
• opponents have to be in fighting range
• each hero unit might have an individual attack range
• heroes can support (e.g. heal) a friendly unit

Which kind of information is necessary?
• Spatial position and unit type for each controlled hero unit
• Attack and support ranges for all units types
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Encounter Situations

• Combat link: 2 hero units from different
teams A and B. Either A can attack B or 
vice versa

• Support link: 2 hero units from the same 
team A and B. Either A can support B or 
vice versa

• Each hero type has individual attack and 
support ranges (Ranges are mean values 
plus to standard deviations)

• Component Graph: Connected Graph
build by Combat/support Links
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Encounter Situations

Formally…

Definition: Combat Component
• units U and the union 𝐸𝐸𝑑𝑑 = 𝐶𝐶𝐶𝐶 ∪ 𝑆𝑆𝑆𝑆 of combat links CL and 

support links SL between the units in U. 

• 𝐸𝐸𝑢𝑢 = 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 ∈ 𝐸𝐸𝑑𝑑 ∨ 𝑢𝑢𝑗𝑗 ,𝑢𝑢𝑖𝑖 ∈ 𝐸𝐸𝑑𝑑
• situation graph 𝐺𝐺(𝑈𝑈,𝐸𝐸𝑢𝑢).

• combat component C: connected subgraph 𝐺𝐺(�𝑈𝑈, �𝐸𝐸) of 
𝐺𝐺(𝑈𝑈,𝐸𝐸𝑢𝑢) where �𝑈𝑈 ⊆ 𝑈𝑈, �𝐸𝐸 ⊆ �𝑈𝑈 × �𝑈𝑈
and ∀𝑢𝑢1,𝑢𝑢𝑙𝑙 ∈ �𝑈𝑈:∃ 𝑢𝑢1,𝑢𝑢2, . .𝑢𝑢𝑙𝑙
where 𝑖𝑖 ∈ {1, . . , 𝑙𝑙}: (𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖+1) ∈ �𝐸𝐸

and ∃𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 ∈ �𝑈𝑈:𝑢𝑢1. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≠ 𝑢𝑢2. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.
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Defining Encounters

t1 t2 t3 t4

• Component Graphs describe an Encounter at tick t
• An encounter usually lasts multiple consecutive ticks

• Hero Units can join encounters

• Hero Units might be defeated or leave 

• Encounters can split

• Encounters can join
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Defining Encounters

Formally…

Definition: Successor
Given a set of components CSt={ C1,t ,… ,Cl,t } describing 
encounter E at tick t. Let 𝜏𝜏 be a timeout threshold. A 
component 𝐶𝐶𝑡𝑡+𝛥𝛥𝛥𝛥is a successor of CSt denoted as 𝐶𝐶𝑆𝑆𝑡𝑡 →
𝐶𝐶𝑡𝑡+𝛥𝛥𝛥𝛥if the following conditions hold:

• 𝛥𝛥𝛥𝛥 ≤ 𝜏𝜏
• ∃𝑢𝑢1,𝑢𝑢2 ∈ 𝐶𝐶𝑡𝑡+𝛥𝛥𝛥𝛥:∃𝐶𝐶𝑖𝑖,𝑡𝑡 ∈ 𝐶𝐶𝑆𝑆𝑡𝑡:𝑢𝑢1 ∈ 𝐶𝐶𝑖𝑖,𝑡𝑡 ∧ 𝐶𝐶𝑗𝑗,𝑡𝑡 ∈ 𝐶𝐶𝑆𝑆𝑡𝑡:𝑢𝑢2 ∈ 𝐶𝐶𝑗𝑗,𝑡𝑡 ∧
𝑢𝑢1. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≠ 𝑢𝑢2. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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Defining Encounters

Formally….

Definition: Encounter
An encounter is a sequence (CS0,.., CS,l) of lists of 
components CSi where the following condition holds: 
∀𝐶𝐶𝑖𝑖,𝑡𝑡 ∈ 𝐶𝐶𝑆𝑆𝑡𝑡:𝐶𝐶𝑆𝑆𝑡𝑡−1 → 𝐶𝐶𝑖𝑖,𝑡𝑡 with 𝑡𝑡 ∈ {1, . . , 𝑙𝑙}. 
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Encounter Detection

What is the input data ?
• hero type (combat range, support range), team
• time series of position updates (one at a time)

Algorithm:
• initialize hero information
• stream over position updates and update distances
• for each player movement process the impact to the 

current component graphs
• keep lists of open encounters
• move encounters to a closed set if they time out
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The Algorithm

Encounter Detection (position_stream)
While position_stream.hasNext():

component = build_component(unit,distance_table)
If component is combat component:

compute predecessors(component, open_encounters)
If predecessors.size() == 0:

open_encounters.add(new Encounter(component)
If predecessors.size() == 1:

predecessors.get(1).update(component)
If predecessors.size() >1:

open_encounters.join(predecessors,component)
For encounter in open_encouters:

If encounter has timeout:
move encounter from open_encounter to closed_encounters

For encounter in open_encouters:
move encounter from open_encounter to closed_encounters

return closed_encounters
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An Example Encounter
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An Example Encounter (Detailed View)

1 2 3 4

5 6 7 8
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Learning Goals

• use cases for spatial game analytics
• heat maps with bin counting and kernel density estimation
• tasks of spatial data mining
• spatial outlier detection with POD
• trajectories, relative and absolute trajectories
• comparing trajectories (LCSS)
• compressing trajectories
• pattern search in trajectories

• definition of flocks
• calculation of flocks
• definition of meets
• encounter detection
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