

Lecture Notes for Managing and Mining Multiplayer Online Games Summer semester 2017

Chapter 8: Temporal Analysis

Lecture Notes © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter Overview

- Behavior and Sequences
- Comparing Sequences
- Finding frequent subsequences
- Markov chains
- Hidden Markov-Chains
- Time series and feature-transformations
- Comparing time series
- Poisson-Processes

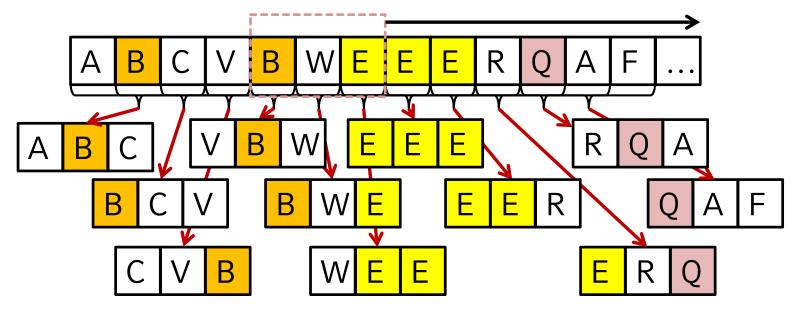
player behavior

examples for player behavior

- sequence of moves in chess
- sequence of movement, action and interaction in a MMORPG
- sequence of orders to units in RTS Games
- conceptionally behavior consists of a sequence of possible actions
- Simplest models for behavior are strings or sequences.

Definition: Let $A = \{A_1, ..., A_n\}$ be a finite alphabet of *n* possible player actions, then the *I*-Tuple $(a_1, ..., a_l) \in A \times ... \times A$ is a sequence of *I* length over **A**.

Remark:


- Model describes only observations and does not differentiate between possible and impossible sequences.
- Model neglects the time between actions.

Example: SC II Zerg Rushes

🕙 Aggressive Pool First - Lie	quipedia Starcraft 2 Wiki - Mozilla Firefox					_ 8 ×
Datei Bearbeiten Ansicht	<u>Chronik Lesezeichen Extras Hilfe</u>					
🕜 💽 🗧 🗶 🏠 🙀 http://wiki.teamilquid.net/starcraft2/Aggressive_Pool_First 📓 🏠 🔹 10 pool build order					P	
应 Meistbesuchte Seiten 🔝 A	Aktuelle Nachrichten 🔣 SPIEGEL ONLINE - Na 🏥 DBS					
Aggressive Pool First -	Liquipedia St 🔅					-
Permanent link						
	Basic Build Order					_
	All the variations of this opening are shown below:					
	6 Pool 3 [hide]	7 Pool 😮	[hide]	8 Pool 😮	[hide]	
	 6 Spawning Pool 5 Drone 6 Drone (2) 100% Spawning Pool, 3 pairs of Zerglings 10 Zergling (Extractor Trick) 11 Overlord 	 7 Spawning Pool 6 Drone 7 Drone 8 Overlord @ 100% Spawning Pool, 3 pairs a 4th pair of Zerglings when the lateral sectors and the sector of the		 8 Spawning Pool 7 Drone 8 Drone 9 Overlord @ 100% Spawning Pool, 3 pairs of a 4th pair of Zerglings when the law 		
	9 Pool 😮 [hide]		10 Pool 📀	[hide]		
	 9 Spawning Pool 8 Drone 9 Drone 10 Drone (Extractor Trick) 11 Overlord @ 100% Spawning Pool, 3 pairs of Zerglings a 4th pair of Zerglings when the larva becomes available 		 10 Spawning Pool 9 Drone 10 Overlord 10 Drone (Extractor Trick) @ 100% Spawning Pool, 3 a 4th pair of Zerglings when 	the larva becomes available		
	The only key difference in the variations, besides the number of dro 10 Pool allows you to start your Queen almost immediately after yo		ol doesn't allow for an Overlor	d to be made before the Zerglings are ready		
	Spawning Pool timings	our minuar o zerginigs ale Made.				•
Fertig						

Subsequences and Partitioning

- Which player is observed at a given time and for how long?
- The longer a player is observed, the less likely it becomes that another player behaves similarly
- To find typical behavioral patterns a sequence is usually divided into subsequences.
- Windowing (partitions a sequence)
 Slide a window of length k over the sequence and consider all subsequences. (here k = 3)

Subsequences and Partitioning

- **problem**: A sequence of length *I* has *I* (*k*-1) *k*-elemental subsequences and many of those are irrelevant.
- **idea**: Only sequences appearing with a certain frequency are of interest.

Frequent Subsequence Mining

- Find all subsequences in a sequence database appearing more frequently than *minsup*. (cf. Frequent Itemset Mining)
- \Rightarrow length of the sequence is arbitrary.
- \Rightarrow search space is larger than the search space of itemset mining. (several occurrences of elements and orders)

Frequent Subsequence Mining

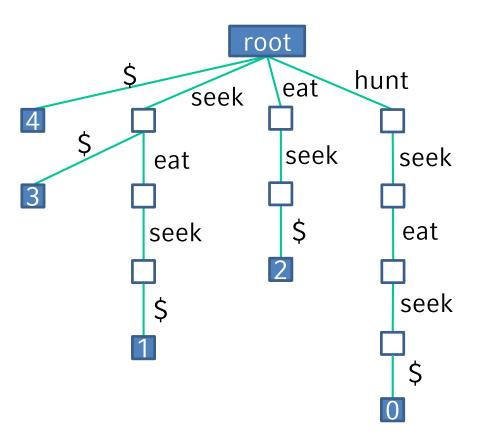
- frequency *fr(S,G)* of S in sequence G: count occurrence of S in G
- relative frequency of S:

$$\varphi(S,G) = \frac{fr(S,G)}{|G| - |S| - 1}$$

- sequence description of G: $\delta(G) = \{ (S, \varphi(S, G)) | S \in G \}$
- mining sequential patterns is well explored
 => many approaches and algorithms

Properties of a Suffix Tree *ST* for the alphabet *A* with sequence *G* where |G| = n:

- to rule out ambivalence, words are padded with a terminal symbol (A), commonly \$.
- ST has exactly *n*+1 leaf nodes numbered from 0 to *n*, on the way from the root to the leaf *i* the suffix of length *n*-*i* is filed.
- Edges represent elements of A{\$} (uncompressed form), nonempty partial-sequences of A{\$} respectively
- Edges, emanating from the same starting node, must begin with different elements of *A*.

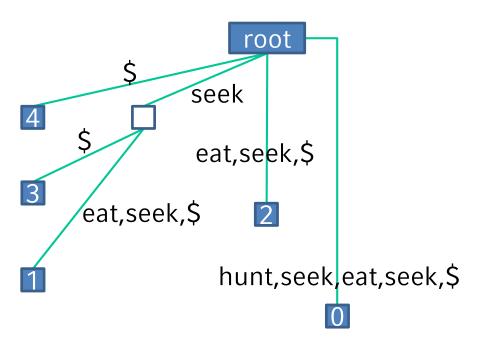

Creation in O(linput stringl), Search in O(lquery stringl)

- example: alphabet A ={eat, hunt, seek, flee, defend}
- insert:

```
S_1 = (seek, hunt, eat, seek)
S_2 = (seek, flee,hunt)
```

- example: Alphabet A ={eat, hunt, seek, flee, defend}
- insert:

 $S_1 =$ (hunt, seek, eat, seek) (hunt, seek, eat, seek, \$) $S_2 =$ (seek, flee, hunt) (seek, flee, hunt, \$)

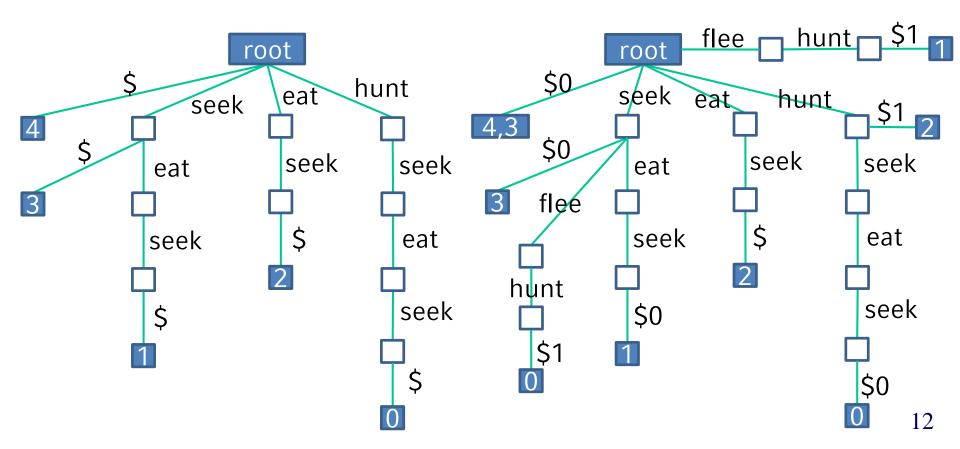


uncompressed variant: every edge is labeled with an element of A{\$}

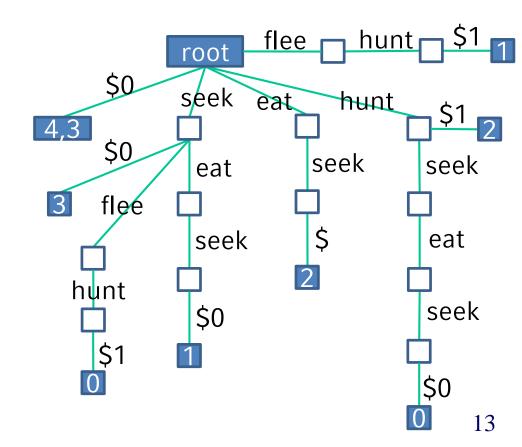
compressed variant: combine sub-paths without branches into one edge

- example: Alphabet A ={eat, hunt, seek, flee, defend}
- insert:

 $S_1 =$ (hunt, seek, eat, seek) (hunt, seek, eat, seek, \$) $S_2 =$ (seek, flee, hunt) (seek, flee, hunt, \$)



uncompressed variant: Every edge is labeled with an element of A{\$}


compressed variant: combine sub-paths without branches into one edge

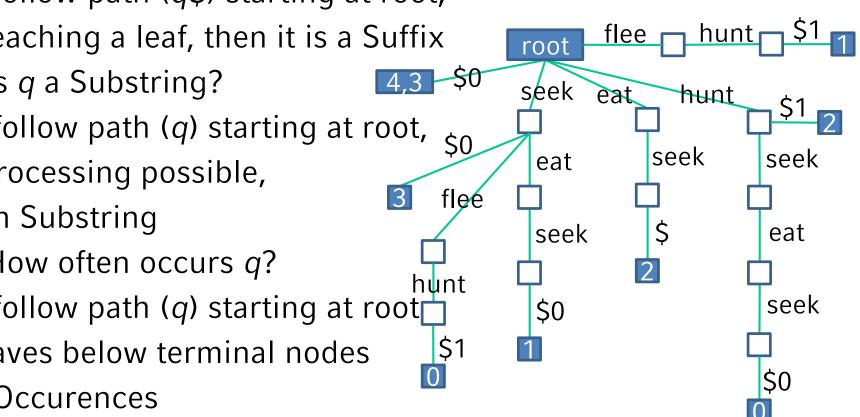
- example: Alphabet A ={eat, hunt, seek, flee, defend}
- insert:

 $S_1 =$ (hunt, seek, eat, seek) (hunt, seek, eat, seek, \$) $S_2 =$ (seek, flee, hunt) (seek, flee, hunt, \$)

- example: Alphabet A ={eat, hunt, seek, flee, defend}
- sample queries:
- Is q a Suffix?
- Is q a Substring?
- How often occurs q?

- Example: Alphabet A ={eat, hunt, seek, flee, defend}
- Sample request:
- Is q a Suffix?
- \Rightarrow follow path (q\$) starting at root,

If reaching a leaf, then it is a Suffix


– Is q a Substring? => follow path (q) starting at root, If processing possible, 3

then Substring

– How often occurs q? => follow path (q) starting at root

#leaves below terminal nodes

= #Occurences

Interestingness of Subsequences

- interesting ≠ frequent
- common sequence: select drones, collect crystals, train drone, ...

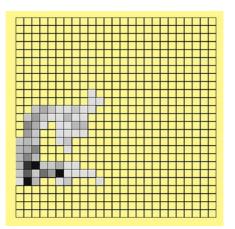
but: the first actions in SC II are almost always identical.

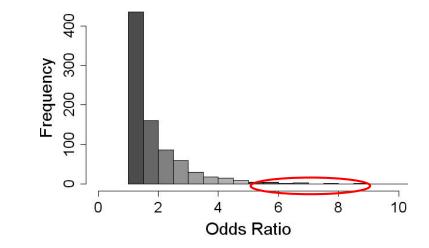
- number of frequent subsequences can be very large.
- most of which describe standard game plays.
- interestingness should be evaluated in relation to another attribute:
 - Map (Relating to a place)
 - Player (Relating to an individual)
 - Strategy (Relating to situation)
 - Combination of multiple relations (Map and Strategy ...)

Measures for Interestingness

use correlation measures:

- find a target variable: e.g. player_id
- find interesting events: e.g. boss-fights, flag bearer, ...
- find places triggering similar behavior: spawning points, flag delivery locations, boss encounter site, ...
- example calculations:
 - Mutual Information


$$MI(S, Player_ID) = \sum_{P \in Players} \sum_{S \in \{S_1, \overline{S_1}\}} \Pr[S, P] \cdot \log \frac{Pr[S, P]}{Pr[S] \cdot Pr[P]}$$


• Odds Ratio

odds
$$R_{s}(G_{1},G_{2}) = \frac{\varphi(S,G_{1})}{\varphi(S,G_{2})}$$

Use of frequent subsequences

- player identification: use the occurrence of the k-"most interesting" partial sequences as vector space dimensions.
 (here interesting = highest MI with player_id)
 => describe players as vectors of observed subsequences.
- search locations specific behavior: compare the incidence of actions on the map to the amount of actions in a given location. (Odds-Ratio)

Comparing two Sequences

given: Alphabet A and a sequence database $DB \quad \{(x_1, ..., x_k) | k \in IN \land x_i \in A \text{ for } 1 \le i \le k\}.$

task: compute the similarity of S1, $S2 \in DB$.

Hamming Distance: number of different entries over all positions. For 2 sequences with |S1|=|S2|=k:

$$Dist_{Ham}(S1, S2) = \sum_{i=0}^{k} \begin{cases} 0 & if \quad s_{1,i} = s_{2,i} \\ 1 & else \end{cases}$$

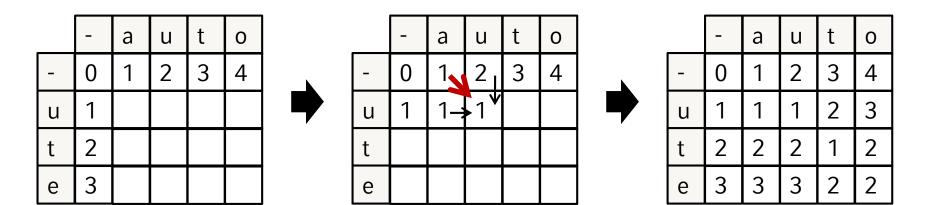
Remark: For sequences of different length, the shorter sequence is filled with the gap symbol "-".

example: S1 = (A, B, B, A, B) und S2 = (A, A, A, A, A)

Levenshtein Distance

- Hamming Distance: Computing the minimum cost to transform S1 into S2. Only substitutions of single elements are allowed in doing so. (Turn B into A.)
- Hamming Similarity: Counts the number of similar elements.
- **idea**: Extend the allowed transformations to include deletion and insertion of symbols.
- Levenshtein Distance: Minimum expense to transform *S1* into *S2* using 3 operations *Delete, Insert* and *Substitute*.

Calculating Levenshtein Distance


given: Two sequences S1, S2 over the alphabet A with [S1]=n and [S2]=m. **task**: *Dist_{Lev}(S1,S2)* Calculating Levenshtein Distance with dynamic programming: Let *D* be a *n×m*-Matrix over *IN* with:

$$\begin{split} D_{0,0} &= 0 \\ D_{0,i} &= i, \ 0 \leq i \leq n \\ D_{j,0} &= j, \ 0 \leq j \leq m \\ D_{i-1,j-1} &+ 0, \ falls \ s_{1i} = s_{2,j} \\ D_{i-1,j-1} &+ 1, \ (Substitution) \\ D_{i,j-1} &+ 1, \ (Substitution) \\ D_{i,j-1} &+ 1, \ (Insertion \) \\ D_{i-1,j} &+ 1, \ (Deletion \) \end{split}$$

After construction of matrix D, $D_{n,m}$ contains the Levenshtein-distance between both input sequences.

Example Levenshtein Distance

S1 = auto, S2 = ute

	-	а	u	t	0
-	0	1	2	3	4
u	1	1	1	2	3
t	2	2	2	1	2
е	3	3	3	2	2

(a,u,t,o)
$$Dist_{Lev}$$
 (S1,S2)=2
(-, u,t,e)

Edit Distances

- generalization of Levenshtein-Distances:
 - different cost matrix: substitution costs 4, deletion 1, insertion 2...
 - more operations:
 - transposing order

(A,B,B,A,B)(A,B,A,B,B) 1 transposition

• duplicating, ...

$$\begin{array}{c} (A, B, B, B, B, B) \\ (A, B,) \end{array} \begin{array}{c} 3 \ duplicates \ of \ B \end{array}$$

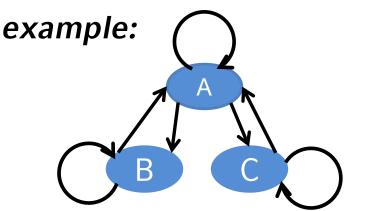
• costs may differ for different values:

Subst.(A,B) \neq Subst.(A,Z)

 works for sequences based on real-valued alphabets, for example: For A = IR: Subst(5,1) = [5-1]

Markov Chains and Sequences

- sequences of actions are subject to certain rules
- modeling with finite automatons (testing sequence for validity)
- Markov chains are probabilistic automatas:
 - allowed state transitions
 - probability distributions for state transitions.
- 1st order Markov assumption : The state at time t+1 depends solely on the state at timet.
- the order of a Markov chain is the number of predecessor states on which the choice of the next state might depend.


First Order Markov-Chains

definition: A Markov chain **M** is defined for a state set **A** and a stochastic transition-matrix $|A| \times |A| = D$.

explanations:

- A may contain a start- and a absorption-state (Modeling Start and End)
- stochastic Matrix: rows add up to 1.

(row *i* contains the distribution of successors for state *i*)

	-	А	В	C
-	0.0	0.3	0.3	0.4
А	0.1	0.25	0.5	0.15
В	0.1	0.5	0.4	0.0
С	0.1	0.1	0.7	0.1

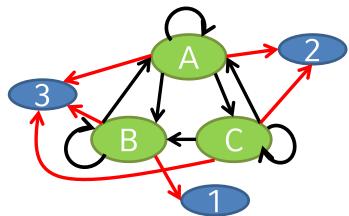
 $p(ACBB) = P(A \mid -) \cdot P(C \mid A) \cdot P(B \mid C) \cdot P(B \mid B) \cdot P(- \mid B)$ = 0.3 \cdot 0.15 \cdot 0.4 \cdot 0.7 \cdot 0.4 \cdot 0.1

Hidden Markov Models

training a Markov chain:

 break the training sequence down into 2-grams and determe the relative frequency. (How often is A followed by B?)

$$P(B \mid A) = \frac{fr(AB)}{fr(A)}$$


problem:

- observations often do not match the observed behavior:
 - action log is available, but game-play has to be analyzed
 - incorrect execution obfuscates actual intentions
 - analysis of an AI state changes (observed actions may be employed in different states)

Hidden Markov Models

Definition: A Hidden Markov Model *M* is defined by a state set *A*, a stochastic transition matrix $|A| \times |A| = D$, an observation set B and a stochastic output-matrix $|A| \times |B| = F$.

Example: A={A,B,C}, B={1,2,3}

D	-	А	В	C	F	1	2
-	0.0	0.3	0.3	0.4	А	0.0	0.2
А	0.1	0.25	0.5	0.15	В	0.5	0.0
В	0.1	0.5	0.4	0.0	С	0.0	0.5
С	0.1	0.1	0.7	0.1			

P(122): define all possible state triples, generated by 122 : BAA, BAC

 $P(122) = P(BAA) \cdot P(122 \mid BAA) + P(BAC) \cdot P(122 \mid BAC)$

3

0.8

0.5

0.5

Use of HMM

- Evaluation: How likely is an observation $O=(o_1, ..., o_k)$ with $o_i \in B$ for the HMM (A,B,D,F)? (Forward Estimation)
- **Recognition**: Given the observation $O=(o_1, ..., o_k)$ and the HMM (A, B, D, F) which sequence $(s_1, ..., s_k)$ with $s_i \in A$ gives the best explanation for O? (*Viterbi-Algorithm*)
- Training: Given the observation O=(o₁, ..., o_k), how can we modify D and F to maximize P(O|(A,B,D,F))?
 (Baum-Welch Estimation)

Evaluation: Forward Variables

given: *O*=(*o*₁, ..., *o*_k) and (*A*,*B*,*D*,*F*)

task: P(O|(*A*,*B*,*D*,*F*))

naive solution: calculate P(O|S) for all k-elemental sequences S on A.

(number grows exponentially with k)

improved solution: utilize Markov assumption

define forward-variable α_i (t) as

$$\alpha_{j}(t) = P(o_{1}, o_{2}, ..., o_{t}, s_{t} = a_{j} \mid (ABDF))$$

calculation by induction:

$$\alpha_{j}(1) = d_{-,j} \cdot f_{j,o_{1}} \quad ,1 \leq j \leq |A|$$

$$\alpha_{j}(t+1) = \left(\sum_{i=1}^{|A|} \alpha_{i}(t) \cdot d_{i,j}\right) \cdot f_{j,ot+1} \quad ,1 \leq t \leq k-1$$

calculating with |A|²·k operations:

$$P(O \mid (A, B, D, F)) = \sum_{i=1}^{|A|} P(O, s_i = a_i \mid (A, B, D, F)) = \sum_{i=1}^{|A|} \alpha_i(k)$$

Recognition: Viterbi Algorithm

given: *O*=(*o*₁, ..., *o*_{*k*}), and Model (*A*, *B*,*D*,*F*).

task: *S*=(*s*₁, ..., *s*_k), which maximizes *P*(*O*/*S*,(*A*, *B*,*D*,*F*)).

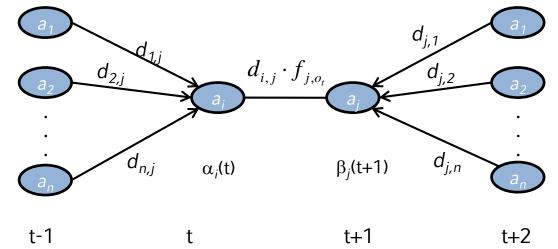
• define $\delta(t)$ as the highest probability of a sequence on A of length *t* for the observation *O*. $\delta_{1}(t) = \max P(s_{1}, \dots, s_{n-1}, O | (A, B, D, F))$

$$\mathcal{S}_{j}(t) = \max_{s_{1},...,s_{t-1}} P(s_{1},...,s_{t-1},O | (A,B,D,F))$$

calculation by induction

$$\begin{split} & \delta_{j}(1) = d_{-,j} \cdot f_{j,o_{1}} & , 1 \leq j \leq |A| \\ & \delta_{j}(t+1) = \left(\max_{1 \leq i \leq |A|} \left(\delta_{i}(t)d_{i,j} \right) \right) \cdot f_{j,o_{t+1}} & , 1 \leq j \leq k-1 \\ & \psi_{j}(1) = 0 & , 1 \leq j \leq |A| \\ & \psi_{j}(t+1) = \arg\max_{1 \leq i \leq |A|} \left(\delta_{i}(t)d_{i,j} \right) & , 1 \leq j \leq k-1 \end{split}$$

• similar to forward algorithm, but more efficient since only the best solution is pursued.


Backward Variables

analogously to Forward-Variable a Backward-Variable can be defined, used in training the HMM.

define Backward-Variable $\beta_j(t)$ as $\beta_j(t) = P(o_{t+1}, ..., o_k | s_t = a_j, (ABDF))$

Calculation by Induction:

$$\begin{split} \beta_i(k) &= 1 \quad , 1 \leq i \leq |A| \\ \beta_i(t-1) &= \sum_{j=1}^{|A|} d_{i,j} \cdot f_{j,o_t} \cdot \beta_j(t) \quad , 2 \leq t \leq k \end{split}$$

Training: Baum-Welch Estimation

given: *O*=(*o*₁, ..., *o*_k), *A* and *B*.

task: D, F, maximizing P(O|(A,B,D,F)).

• Locally optimize solution with *Expectation Maximization* (EM)

Define $\xi_{i,j}$ (*t*) as the likelihood of being in state a_i at the point in time *t* and being in state a_i at the point in time t+1:

$$\begin{split} \xi_{i,j}(t) &= P(s_t = a_i, s_{t+1} = a_j \mid O, (A, B, D, F)) \\ &= \frac{\alpha_i(t) \cdot d_{i,j} \cdot f_{j,o_{t+1}} \beta_j(t+1)}{P(O \mid (A, B, D, F))} \\ &= \frac{\alpha_i(t) \cdot d_{i,j} \cdot f_{j,o_{t+1}} \beta_j(t+1)}{\sum_{k=1}^{|A|} \sum_{l=1}^{|A|} \alpha_k(t) \cdot d_{k,l} \cdot f_{l,o_{t+1}} \beta_j(t+1)} \end{split}$$

• Define γ_i (t) as the probability of being in state a_i at the point in time *t*:

$$\gamma_i(t) = \sum_{j=0}^{|A|} \xi_{i,j}(t)$$

Training: Baum-Welch Estimation

- $\sum_{t=1}^{n-1} \xi_{i,j}(t)$ equals the expected number of state transitions from a_i to a_i .
- $\sum_{t=1}^{k-1} \gamma_i(t)$ equals the expected number of state transitions from a_i to other states.
- parameter are being recomputed as follows:

$$d_{-,a_{i}} = \gamma_{i}(1) \quad , d_{i,j} = \frac{\sum_{t=1}^{k-1} \xi_{i,j}(t)}{\sum_{t=1}^{k-1} \gamma_{i}(t)} \quad , f_{j,b_{l}} = \frac{\sum_{t \in \{t \mid o_{t} = b_{l}\}} \gamma_{i}(t)}{\sum_{t=1}^{k-1} \gamma_{i}(t)}$$

- training happens in alternating steps
 - calculate of γ_i (t), $\xi_{i,j}$ (t) and P(O|(A,B,D,F))
 - updates of *D* and *F* (updates see above)
- algorithm terminates when
 P(OI(A, B, D, F)) grows less than

Real-Value Sequences

- **so far**: Alphabet is a discrete domain
- Sequences can also be created based on real-value domains, for example *IR*^d.
- Frequent Pattern Mining on real-value domains is usually impossible.
- Comparing 2 real-value sequences on domain D with a distance function *dist:* D D IR₀⁺.
 - Analogous to Hamming Distance one can determine the sum of distances for every position of the sequence.

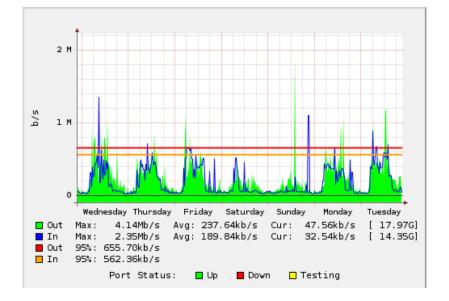
$$dist_{sequ}(S_1, S_2) = \sum_{i=1}^{|S_1|} dist(s_{1,i}, s_{2,i}) + (|S_2| - |S_1|) \cdot \varphi, \quad f "i" |S_2| \ge |S_1|, \varphi \in IR^+$$

- Extension of edit distance is als possible: Substitution cost for *v* and *u* correlates to *dist(v,u)*.
 - (More details follow later for Dynamic Time Warping)

Time series

• **so far**: sequences model the order of actions, but not the points in time.

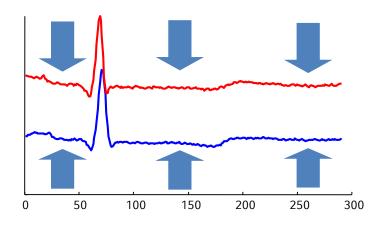
but: in real time games timing is essential.

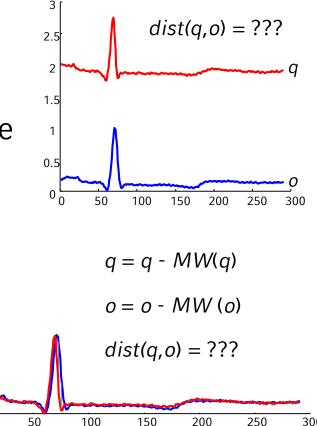

- ⇒ RTS games: build order are only effective if they can be realized in minimal time.
- \Rightarrow in MMORPGs the damage caused depends on the number of actions per time unit.
- \Rightarrow chess with chess clock: a move is also measured by the time needed to think.
- time series: Let *T* be a domain to model time and let *F* be an object presentation, then:
 Z=((x₁,t₁),.., (x₁,t₁))∈ (F×T)×.. ×(F×T) is a time series of length *I* on *F*.

Examples for Time Series

• SC2-Logs: time series on discrete actions

0:00 TSLHyuN	Select Hatchery (10230)
0:00 TSLHyuN	Select Larva x3 (1027c,10280,10284), Deselect all
0:00 TSLHyuN	Train Drone
0:01 TSLHyuN	Train Drone
0:01 TSLHyuN	Select Drone x6 (10234,10238,1023c,10240,10244,10248),
Deselect all	
0:01 TSLHyuN	Right click; target: Mineral Field (10114)
0:01 TSLHyuN	Deselect 6 units
0:02 TSLHyuN	Right click; target: Mineral Field (10170)


- Network-Traffic:
 - used in bot detection
 - estimating game intensity

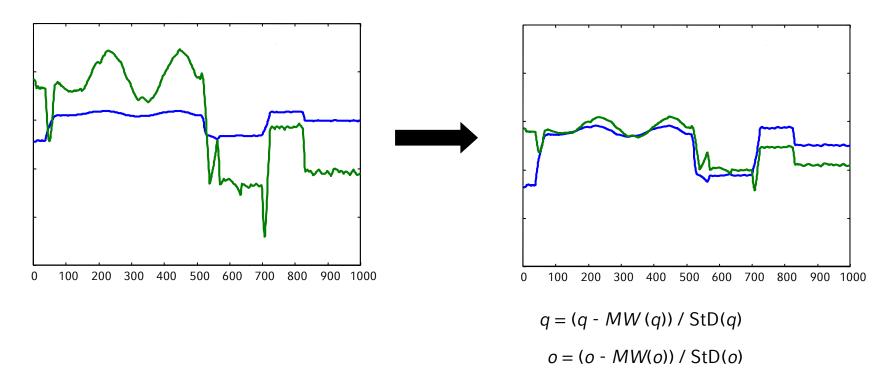


Preprocessing Time series (1)

offset translation

- similar time series with different offsets
- shifting all time series around the
- mean MW:
 - 1 *i* $|o|: o_i = o_i MW(o)$

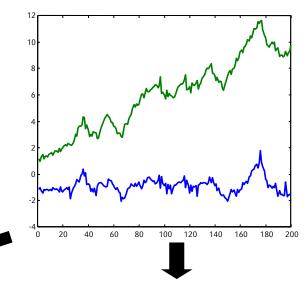
250


300

100

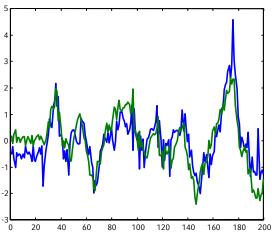
preprocessing time series (2)

scaling amplitudes

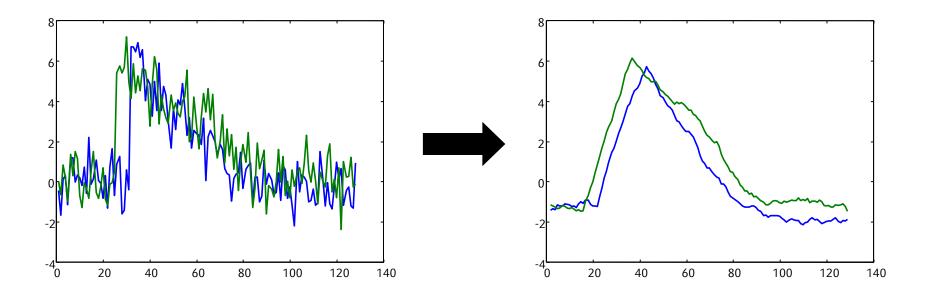

- time series with similar progression but different amplitudes
- shifting the time series around the mean (*MW*) and normalizing the amplitude by standard deviation (StD):
 - 1 *i* $|o|: o_i = (o_i MW(o)) / StD(o)$

preprocessing time series (3)

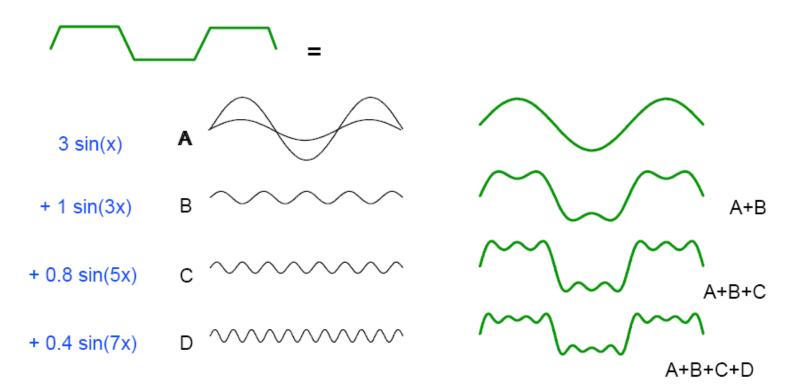
linear trends


- similiar time series with different trends
- Intuition:
 - determine regression line
 - move time series by means of this line

offset translation + amplitudes scaling

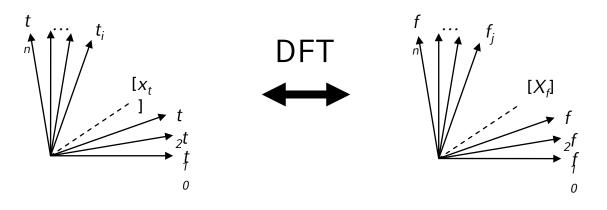

offset translation + Amplitudes scaling + linear trend-removal

Preprocessing time series (4)

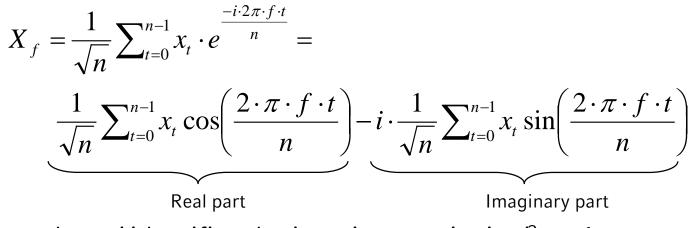

rectifying noise

- similar time series with a large amount of noise
- smoothing: determine for every value o_i the mean over all values [o_{i-k}, ..., o_i, ..., o_{i+k}] for a given k.

idea:


- describe arbitrary periodic functions as weighted sum of periodic base functions with different frequencies. A time series turns into a vector of constant length.
- base functions: sin and cos

Fourier's theorem: A periodic function (which is reasonable continuous) may be expressed as the sum of a series of sine and cosine terms with a specific amplitude.


properties:

- transformation does not change a function, only the presentation
- transformation is reversible => inverse DFT
- analogy: change of base in vector calculation

formal:

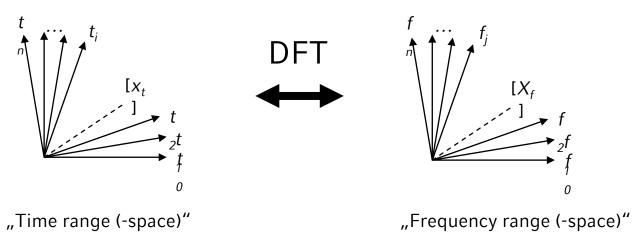
- given a time series of length $n: x = [x_t], t = 0, ..., n 1$
- the DFT of x is a sequence $X = [X_f]$ of n complex numbers for the frequencies f = 0, ..., n 1 with

where *i* identifies the imaginary unit viz. $i^2 = -1$.

• the real part indicates the share of the cosine functions, whereas the imaginary part indicates the share of sine functions of the frequency *f*.

• the inverse DFT restores the original signal:

$$\begin{aligned} x_t &= \frac{1}{\sqrt{n}} \sum_{f=0}^{n-1} X_f \cdot e^{\frac{i \cdot 2 \cdot \pi \cdot f \cdot t}{n}} \\ t &= 0, \dots, n-1 \quad (t: \text{ points in time}) \\ & [x_t] \leftrightarrow [X_f] \text{ describes a Fourier-Paar,} \\ & \text{viz. DFT}([x_t]) = [X_f] \text{ and DFT}^{-1}([X_f]) = [x_t]. \end{aligned}$$


- the DFT is a **linear map**, viz. from $[x_t] \leftrightarrow [X_f]$ and $[y_t] \leftrightarrow [Y_f]$ follows:
 - $[x_t + y_t] \leftrightarrow [X_f + Y_f]$ and
 - $[ax_t] \leftrightarrow [aX_f]$ for a Scalar *a IR*
- energy of a sequence
 - energy E(c) of c is the square of the amplitude: $E(c) = |c|^2$.
 - energy *E(x)* of a sequence x is the sum of all energies of the sequence:

$$E(x) = ||x||^2 = \sum_{t=0}^{n-1} |x_t|^2$$

Parseval's theorem: Energy of a signal in a time range equals the energy in the frequency range.Formal: Let X the DFT of x, then follows:

$$\sum_{t=0}^{n-1} |x_t|^2 = \sum_{t=0}^{n-1} |X_f|^2$$

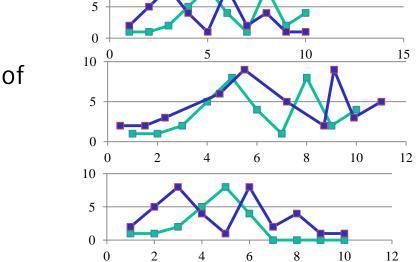
consequence from Parseval's theorem and the DFT's linearity: The euclidean distance of two signals x and y correspond in time and frequency range: || x - y ||² = || X - Y ||²

Basic Idea of query processing:

The euclidean distance is used as a sequence's similarity function:

$$dist(x, y) = ||x - y|| = \sqrt{\sum_{t=0}^{n-1} |x_t - y_t|^2}$$

- parseval's theorem allows for distances to be calculated in the frequency range instead of the time range: dist(x,y) = dist(X,Y)
- in practice the lowest frequencies are the most important.
- the first frequency coefficients contain the most important information.
- for indexing the transformed sequences are shortened, for [X_f], f = 0, 1, ..., n 1 coefficients only the first c coefficients [X_f < c], c < n are indexed.


$$dist_{c}(x, y) = \sqrt{\sum_{f=0}^{c-1} |x_{f} - y_{f}|^{2}} \le \sqrt{\sum_{f=0}^{n-1} |x_{f} - y_{f}|^{2}} = dist(x, y)$$

- for the index a lower bound of the true distance can be calculated: filter-refinement:
 - filter step is based on shortened time series (index assisted)
 - refinement step determines true hits on complete time series

Distances of Time Series

problems: Which points in time are to be compared?

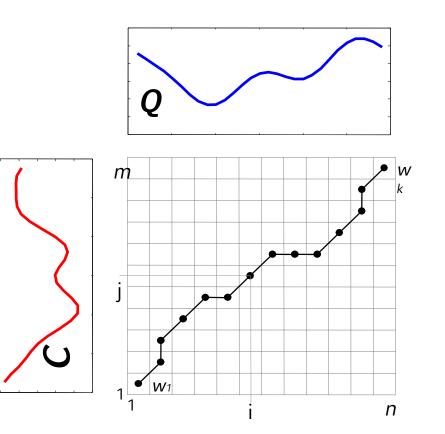
- offset at the beginning:
 S2 is shifted in time to S1.
- clocking of reading: points in time of measuring differ.
- length of time series: measuring periods differ.

10

- time series with the same clocking and length can be compared as vectors. (dimension = point in time) $Dist_{timeseries}(S1, S2) = \sum_{t=1}^{T} dist_{obj}(s_{1t}, s_{2t})$
- for variable length, clocking and offsets: adaption of edit-distance for sequences => Dynamic Time Warping

Dynamic Time Warping Distanz

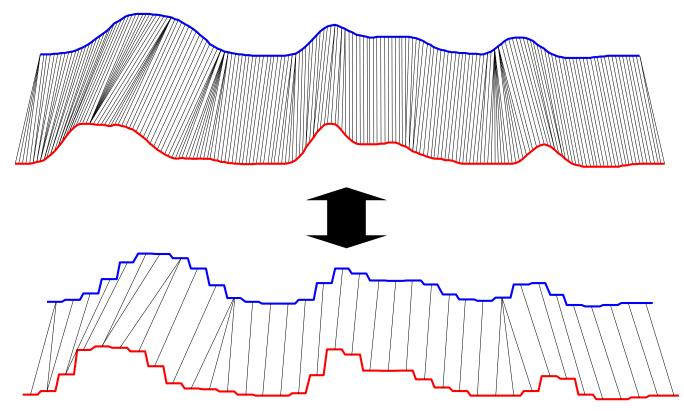
|q| = ncalculation: |o| = mgiven: time series q and o of different length 0 find mapping of all q_i to *o* with minimal expense ۲ Search q matrix т Wk i \bigcirc W_1 n


Dynamic Time Warping Distance

Search Matrix

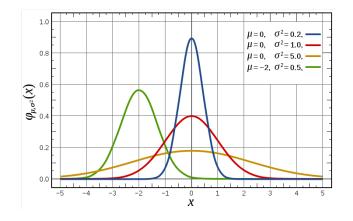
- All possible mappings q to o can be interpreted as a "warping" path within the search matrix
- Of all these mappings, we search for the path with the lowest cost

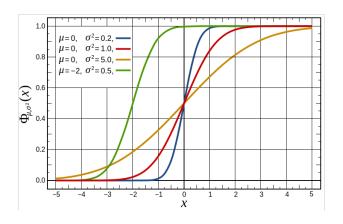
$$DTW(q,o) = \min\left\{\sqrt{\sum_{k=1}^{K} w_k} \middle| K\right\}$$


 Dynamic Programming => Run-time (n · m) (see Edit Distances)

Approximate Dynamic Time Warping Distance

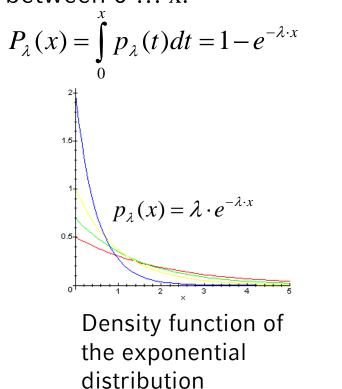
idea:

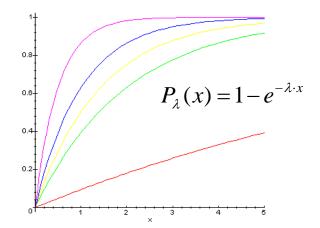

- approximate the time series (compressed representation, Sampling, ...)
- calculate DTW for the approximates



Statistic Models for Time

problem: How is the time of the next action modeled? \Rightarrow statistic models for the time between two events is necessary.


- \Rightarrow time is a continuous variable => probability density function
- \Rightarrow task: compute the probability for the next event *e* occurring within the time frame *t*+ *t*.
- \Rightarrow the cumulative probability density function describes this probability



Homogeneous Poisson Processes

- simplest process to model time
- points in time between 2 events are exponentially distributed
- probability density of the exponential distribution: $p_{\lambda}(x) = \lambda \cdot e^{-\lambda \cdot x}$
- integration yields the cumulative density function describing the probability of the next action happening in the time interval between 0 ... x.

Accumulated density function of the exponential distribution

Parameter assessment

- **given**: A training set of points in time $X = \{x_1, ..., x_n\}$, which are distributed exponentially.
- task: The most likely value for the intensity parameter.
- Approximation with Maximum Likelihood
- => Search the value of λ with the highest probability of generating X. Likelihood function L for Sample X:

$$L_X(\lambda) = \prod_{i=1}^n \lambda \cdot e^{-\lambda \cdot x_i} = \lambda^n \cdot e^{-\lambda \cdot \sum_{i=1}^n x_i} = \lambda^n \cdot e^{-\lambda \cdot n \cdot E(X)} \qquad \text{mit} \quad E(X) = \frac{\sum_{i=1}^n x_i}{n}$$

Differentiate the log-likelihood for λ and set the gradient to zero:

$$\frac{d}{d\lambda} \ln L(\lambda) = \frac{d}{d\lambda} (n \cdot \ln(\lambda) - \lambda \cdot n \cdot E(X)) = \frac{n}{\lambda} - n \cdot E(X)$$
$$\Rightarrow \lambda^* = \frac{1}{E(X)}$$

Learning Goals

- Sequences and time series
- Frequent Subsequence Mining with Suffix-Trees
- Distance measuring sequences
 - Hamming Distance
 - Levenshtein Distance
- Markov-Chains
- Hidden Markov chains
- Time series and preprocessing steps
- Dynamic Time Warping
- Poisson processes

Literature

- Kyong Jin Shim, Jaideep Srivastava: Sequence Alignment Based Analysis of Player Behavior in Massively Multiplayer Online Role-Playing Games (MMORPGs), in Proceedings of the 2010 IEEE International Conference on Data Mining Workshops, 2010.
- Ben G. Weber, Michael Mateas: **A data mining approach to strategy prediction, in** Proceedings of the 5th International Conference on Computational Intelligence and Games, 2009.
- K.T. Chen, J.W. Jiang, P. Huang, H.H. Chu, C.L. Lei, W.C. Chen: Identifying MMORPG bots: A traffic analysis approach, In Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment Tsechnology, 2006.