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Chapter Overview

• Behavior and Sequences
• Comparing Sequences
• Finding frequent subsequences
• Markov chains
• Hidden Markov-Chains
• Time series and feature-transformations
• Comparing time series
• Poisson-Processes
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player behavior
examples for player behavior

• sequence of moves in chess
• sequence of movement, action and interaction in a MMORPG
• sequence of orders to units in RTS Games

• conceptionally behavior consists of a sequence of possible actions
• Simplest models for behavior are strings or sequences.

Definition: Let A={A1, …, An} be a finite alphabet of n possible player 
actions, then the l-Tuple  (a1, …, al) ∈ A×…×A is a sequence of l 
length over A.

Remark:
• Model describes only observations and does not differentiate 

between possible and impossible sequences.
• Model neglects the time between actions.
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Example: SC II Zerg Rushes
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Subsequences and Partitioning

• Which player is observed at a given time and for how long?
• The longer a player is observed, the less likely it becomes that 

another player behaves similarly
• To find typical behavioral patterns a sequence is usually divided into 

subsequences.
• Windowing (partitions a sequence)

Slide a window of length k over the sequence and consider all 
subsequences. ( here k = 3)

A B C V B W E E E R Q A F …

C V B W E E E R Q

Q A F

A B C R Q AE E E

E E RB W E

V B W

B C V
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Subsequences and Partitioning

problem: A sequence of length l has l – (k-1) k-elemental sub-
sequences and many of those are irrelevant.

idea: Only sequences appearing with a certain frequency are 
of interest.

Frequent Subsequence Mining
Find all subsequences in a sequence database appearing 

more frequently than minsup. (cf. Frequent Itemset Mining)

⇒ length of the sequence is arbitrary.
⇒search space is larger than the search space of itemset

mining. (several occurrences of elements and orders)
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Frequent Subsequence Mining

• frequency fr(S,G) of S in sequence G:
count occurrence of  S in G

• relative frequency of S:

• sequence description of G:

• mining sequential patterns is well explored
=> many approaches and algorithms
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Suffix Trees

Properties of a Suffix Tree ST for the alphabet A with sequence 
G where |G| = n:
• to rule out ambivalence, words are padded with a terminal 

symbol (A), commonly $.
• ST has exactly n+1 leaf nodes numbered from 0 to n, on the 

way from the root to the leaf i the suffix of length n-i is filed.
• Edges represent elements of A{$} (uncompressed form), non-

empty partial-sequences of A{$} respectively
• Edges, emanating from the same starting node, must begin 

with different elements of A.

Creation in O(|input string|), Search in O(|query string|)
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Suffix Trees

• example: alphabet A ={eat, hunt, seek, flee, defend}
• insert:

S1 = (seek, hunt, eat, seek) 
S2 = (seek, flee,hunt)
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Suffix Trees

• example: Alphabet A ={eat, hunt, seek, flee, defend}
• insert: 

S1 = (hunt, seek, eat, seek)  (hunt, seek, eat, seek, $)
S2 = (seek, flee, hunt)  (seek, flee, hunt, $)

root

4

3

2

$
seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$

1

$

$

$

uncompressed variant:
every edge is labeled with 
an element of A{$}

compressed variant:
combine sub-paths without 
branches into one edge
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Suffix Trees

• example: Alphabet A ={eat, hunt, seek, flee, defend}
• insert: 

S1 = (hunt, seek, eat, seek)  (hunt, seek, eat, seek, $)
S2 = (seek, flee, hunt)  (seek, flee, hunt, $)

root

4

3
2

$
seek

eat,seek,$

0

$

1

uncompressed variant:
Every edge is labeled with 
an element of A{$}

compressed variant:
combine sub-paths without 
branches into one edgehunt,seek,eat,seek,$

eat,seek,$
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Suffix Trees

• example: Alphabet A ={eat, hunt, seek, flee, defend}
• insert: 

S1 = (hunt, seek, eat, seek)  (hunt, seek, eat, seek, $)
S2 = (seek, flee, hunt)  (seek, flee, hunt, $)

root

4

3

2

$
seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$

1

$

$

$

root

4,3

3

2

$0 seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$0

1

$0

$

$00

flee

hunt

$1

2
$1

$1 1flee hunt
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• example: Alphabet A ={eat, hunt, seek, flee, defend}
• sample queries:
− Is q a Suffix? 
− Is q a Substring?
− How often occurs q?

Suffix Trees

root

4,3

3

2

$0 seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$0

1

$0

$

$00

flee

hunt

$1

2
$1

$1 1flee hunt
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• Example: Alphabet A ={eat, hunt, seek, flee, defend}
• Sample request:
− Is q a Suffix?
=> follow path (q$) starting at root,
If reaching a leaf, then it is a Suffix
− Is q a Substring?
=> follow path (q) starting at root,
If processing possible,
then Substring
− How often occurs q?
=> follow path (q) starting at root,
#leaves below terminal nodes
= #Occurences

Suffix Trees

root
4,3

3

2

$0 seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$0

1

$0

$

$00

flee

hunt

$1

2
$1

$1 1flee hunt
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Interestingness of Subsequences

• interesting ≠ frequent
• common sequence: select drones, collect crystals, train 

drone, … 
but: the first actions in SC II are almost always identical.

• number of frequent subsequences can be very large.
• most of which describe standard game plays.
• interestingness  should be evaluated in relation to 

another attribute:
• Map (Relating to a place)
• Player   (Relating to an individual)
• Strategy (Relating to situation)
• Combination of multiple relations

(Map and Strategy …)
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Measures for Interestingness

use correlation measures:
• find a target variable: e.g. player_id
• find interesting events: e.g. boss-fights, flag bearer, …
• find places triggering similar behavior: spawning points, 

flag delivery locations, boss encounter site, ...
• example calculations:

• Mutual Information

• Odds Ratio

)G(S,
)G(S,  )G,(GoddsR

2

1
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Use of frequent subsequences

• player identification: use the occurrence of the k-”most 
interesting” partial sequences as vector space dimensions.

(here interesting = highest MI with player_id)
=> describe players as vectors of

observed subsequences.
• search locations specific behavior: compare the incidence 

of actions on the map to the amount of actions in a given 
location. (Odds-Ratio)
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Comparing two Sequences

given: Alphabet A and a sequence database 
DB {(x1, …, xk )| k∈ IN ∧ xi∈ A for1≤i≤k}.

task: compute the similarity of S1, S2 ∈ DB.
Hamming  Distance: number of different entries over all positions.

For 2 sequences with |S1|=|S2|=k:

Remark: For sequences of different length, the shorter sequence is 
filled with the gap symbol „-“.
example: S1 = (A,B,B,A,B) und S2 = (A,A,A,A,A)

(A,B,B,A,B)
(A,A,A,A,A)

DistHam (S1,S2)=3

∑
= 

 =

=
k

i

ii
Ham else

ssif
SSDist

0

,2,1

1
0

)2,1(
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Levenshtein Distance

• Hamming Distance: Computing the minimum cost to 
transform S1 into S2. Only substitutions of single elements 
are allowed in doing so. (Turn B into A.)

• Hamming Similarity: Counts the number of similar 
elements.

• idea: Extend the allowed transformations to include 
deletion and insertion of symbols.

• Levenshtein Distance: Minimum expense to transform S1
into S2 using 3 operations Delete, Insert and Substitute.

(A,B,B,A,B)
(A ,A,B)

(A,B,B,A,B)
(A ,- ,- ,A,B) SimLev (S1,S2)=3
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Calculating Levenshtein Distance

given: Two sequences S1, S2 over the alphabet A with |S1|=n and  |S2|=m.
task:  DistLev(S1,S2)
Calculating Levenshtein Distance with dynamic programming:
Let D be a n×m-Matrix over IN with:

After construction of matrix D, Dn,m contains the Levenshtein-distance
between both input sequences.



21

Example Levenshtein Distance

S1 = auto, S2 = ute

a u t-

-

u

t

e

o

1 2 30 4

1

2

3

a u t-

-

u

t

e

o

1 2 30 4

1 1 21 3

2 2 12 2

3 3 23 2

a u t-

-

u

t

e

o

1 2 30 4

1 11

a u t-

-

u

t

e

o

1 2 30 4

1 1 21 3

2 2 12 2

3 3 23 2

(a,u,t,o)
(-, u,t,e)

DistLev (S1,S2)=2
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Edit Distances

• generalization of Levenshtein-Distances:
• different cost matrix: substitution costs 4, deletion 1, insertion 2..
• more operations:

• transposing order

• duplicating, …

• costs may differ for different values: 
Subst.(A,B) ≠ Subst.(A,Z)

• works for sequences based on real-valued alphabets, for 
example: For A = IR:  Subst(5,1) = |5-1|

(A,B,B,A,B)
(A,B,A,B,B) 1 transposition 

(A,B,B,B,B)
(A,B,)

3 duplicates of B



23

Markov Chains and Sequences

• sequences of actions are subject to certain rules
• modeling with finite automatons

(testing sequence for validity)
• Markov chains are probabilistic automatas:

• allowed state transitions
• probability distributions for state transitions.

• 1st order Markov assumption : The state at time t+1
depends solely on the state at timet.

• the order of a Markov chain is the number of predecessor 
states on which the choice of the next state might depend.
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First Order Markov-Chains
definition: A Markov chain M is defined for a state set A and a 

stochastic transition-matrix |A|×|A| = D.
explanations:
• A may contain a start- and a absorption-state

(Modeling Start and End)
• stochastic Matrix: rows add up to 1.

(row i contains the distribution of successors for state i)
example:

A

B C

A B C-

-

A

B

C

0.3 0.3 0.40.0

0.25 0.5 0.150.1

0.5 0.4 0.00.1

0.1 0.7 0.10.1

1.04.07.04.015.03.0
)|()|()|()|()|()(

⋅⋅⋅⋅⋅=
−⋅⋅⋅⋅−= BPBBPCBPACPAPACBBp
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Hidden Markov Models
training a Markov chain:
• break the training sequence down into 2-grams and 

determe the relative frequency.
(How often is A followed by B?)

problem:
• observations often do not match the observed behavior:

• action log is available, but game-play
has to be analyzed

• incorrect execution obfuscates actual intentions
• analysis of an AI state changes 

(observed actions may be employed in different states)

)(
)()|(

Afr
ABfrABP =
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Hidden Markov Models

Definition: A Hidden Markov Model M is defined by a state set A, a 
stochastic transition matrix |A|×|A| = D, an observation set B and a 
stochastic output-matrix |A|×|B| = F.

Example: A={A,B,C}, B={1,2,3}

P(122): define all possible state triples, generated by 122 :
BAA, BAC

A

B C

A B C-

-

A

B

C

0.3 0.3 0.40.0

0.25 0.5 0.150.1

0.5 0.4 0.00.1

0.1 0.7 0.10.1

D 1 2 3

A

B

C

0.0 0.2 0.8

0.5 0.0 0.5

0.0 0.5 0.5

F
2

3

1

)|122()()|122()()122( BACPBACPBAAPBAAPP ⋅+⋅=
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Use of HMM

• Evaluation: How likely is an observation
O=(o1,.., ok) with oi∈ B for the HMM (A,B,D,F)?

(Forward Estimation)

• Recognition: Given the observation O=(o1, …, ok) and the 
HMM (A,B,D,F) which sequence (s1, …, sk) with si ∈ A 
gives the best explanation for O? (Viterbi-Algorithm)

• Training: Given the observation O=(o1, …, ok), how can we 
modify D and F to maximize P(O|(A,B,D,F))?

(Baum-Welch Estimation)
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Evaluation: Forward Variables
given: O=(o1, …, ok) and (A,B,D,F)
task: P(O|(A,B,D,F))
naive solution: calculate P(O|S) for all k-elemental sequences S on A. 

(number grows exponentially with k)
improved solution: utilize Markov assumption
define forward-variable αj(t) as

calculation by induction:

calculating with |A|2⋅k operations:

))(|,...,,,()( 21 ABDFasoooPt jttj ==α

||1,)1(
1,, Ajfd ojjj ≤≤⋅= −α

11,)()1( 1,,

||

1
−≤≤⋅








⋅=+ +

=
∑ ktfdtt otjji

A

i
ij αα

∑∑
==

===
||

1

||

1
)()),,,(|,()),,,(|(

A

i
i

A

i
it kFDBAasOPFDBAOP α



29

Recognition: Viterbi Algorithm

given: O=(o1, …, ok), and Model (A, B,D,F).
task: S=(s1, …, sk), which maximizes P(O|S,(A, B,D,F)).
• define δ(t) as the highest probability of a sequence on A 

of length t for the observation O.

• calculation by induction  

• similar to forward algorithm, but more efficient since 
only the best solution is pursued.
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Backward Variables
analogously to Forward-Variable a Backward-Variable can be defined, 
used in training the HMM.
define Backward-Variable βj(t) as

Calculation by Induction:

))(,|...,,()( 1 ABDFasooPt jtktj == +β

||1,1)( Aiki ≤≤=β
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Training: Baum-Welch Estimation

given: O=(o1, …, ok), A and B.
task: D, F, maximizing P(O|(A,B,D,F)).
• Locally optimize solution with Expectation Maximization (EM)
Define ξi,j (t) as the likelihood of being in state ai at the point in time t and 
being in state aj at the point in time  t+1 :

• Define γi (t) as the probability of being in state ai at the point in time t:
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Training: Baum-Welch Estimation

• equals the expected number of state transitions 
from ai to aj.

• equals the expected number of state transitions 
from ai to other states.

• parameter are being recomputed as follows:

• training happens in alternating steps
• calculate of γi (t), ξi,,j (t) and P(O|(A,B,D,F))
• updates of D and F  (updates see above)

• algorithm terminates when
P(O|(A,B,D,F)) grows less than .
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Real-Value Sequences

• so far: Alphabet is a discrete domain
• Sequences can also be created based on real-value 

domains, for example IRd.
• Frequent Pattern Mining on real-value domains is usually 

impossible.
• Comparing 2 real-value sequences on domain D with a 

distance function dist: D D IR0 
+.

• Analogous to Hamming Distance one can determine the sum of 
distances for every position of the sequence.

• Extension of edit distance is als possible: Substitution cost for  v
and u correlates to dist(v,u).

• (More details follow later for Dynamic Time Warping)

( ) ( ) +
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Time series
• so far: sequences model the order of actions, but not the 

points in  time.
but: in real time games timing is essential.
⇒ RTS games: build order are only effective  if they can 

be realized in minimal time.
⇒ in MMORPGs the damage caused depends on the 

number of actions per time unit.
⇒ chess with chess clock: a move is also measured by 

the time needed to think.
• time series: Let T be a domain to model time and let F

be an object presentation, then:
Z=((x1,t1),.., (xl,tl))∈(F×T)×.. ×(F×T) is a time series of 
length l on F.
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Examples for Time Series
• SC2-Logs: time series on discrete actions

• Network-Traffic:
• used in bot detection
• estimating game intensity

0:00  TSLHyuN       Select Hatchery (10230)
0:00  TSLHyuN       Select Larva x3 (1027c,10280,10284), Deselect all
0:00  TSLHyuN       Train Drone
0:01  TSLHyuN       Train Drone
0:01  TSLHyuN       Select Drone x6 (10234,10238,1023c,10240,10244,10248), 
Deselect all
0:01  TSLHyuN       Right click; target: Mineral Field (10114)
0:01  TSLHyuN       Deselect 6 units
0:02  TSLHyuN       Right click; target: Mineral Field (10170)
….
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Preprocessing Time series (1)

offset translation
• similar time series with

different offsets
• shifting all time series around the 
• mean MW:

1 i |o|: oi = oi – MW(o)
0 50 100 150 200 250 3000

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300

0 50 100 150 200 250 300

q = q - MW(q)

o = o - MW (o)

dist(q,o) = ???

dist(q,o) = ???

q

o
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preprocessing time series (2)
scaling amplitudes
• time series with similar progression but different amplitudes
• shifting the time series around the mean (MW) and normalizing the 

amplitude by standard deviation (StD):
1 i |o|: oi = (oi – MW(o)) / StD(o)

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

q = (q - MW (q)) / StD(q)

o = (o - MW(o)) / StD(o)
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preprocessing time series (3)
linear trends
• similiar time series with different trends

• Intuition:
• determine regression line
• move time series by means of this line

0 20 40 60 80 100 120 140 160 180 200
-4

-2

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200
-3

-2

-1

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200
-3

-2

-1

0

1

2

3

4

5

offset translation + amplitudes 
scaling offset translation + Amplitudes scaling

+ linear trend-removal



39

Preprocessing time series (4)
rectifying noise
• similar time series with a large amount of noise
• smoothing: determine for every value oi the mean over 

all values [oi-k, …, oi, …, oi+k] for a given k.

0 20 40 60 80 100 120 140
-4

-2

0

2

4

6

8

0 20 40 60 80 100 120 140
-4

-2

0

2

4

6

8
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Discrete Fourier Transformation (DFT)
idea:
• describe arbitrary periodic functions as weighted sum of periodic 

base functions with different frequencies. A time series turns into a 
vector of  constant length.

• base functions: sin and cos
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Discrete Fourier Transformation (DFT)
Fourier’s theorem: A periodic function (which is reasonable 
continuous) may be expressed as the sum of a series of sine and cosine 
terms with a specific amplitude.

properties:
• transformation does not change a function, only the presentation
• transformation is reversible => inverse DFT
• analogy: change of base in vector calculation

t
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… ti
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0

t
1

t
2

[xt
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f
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f
0

f
1

f
2

[Xf]

DFT
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Discrete Fourier Transformation (DFT)
formal:
• given a time series of length n: x = [xt], t = 0, …, n – 1
• the DFT of x is a sequence  X = [Xf] of n complex numbers for the 

frequencies  f = 0, …, n – 1 with

where i identifies the imaginary unit viz. i2 = –1.
• the real part indicates the share of the cosine functions, whereas the 

imaginary part indicates the share of sine functions of the frequency f.

Real part Imaginary part
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Discrete Fourier Transformation (DFT)
• the inverse DFT restores the original signal:

t = 0, …, n – 1  (t: points in time)
[xt] ↔ [Xf] describes a Fourier-Paar, 
viz. DFT([xt]) = [Xf]  and DFT–1([Xf]) = [xt].

• the DFT is a linear map, viz. from [xt] ↔ [Xf] 
and [yt] ↔ [Yf] follows:
• [xt + yt] ↔ [Xf + Yf] and
• [axt] ↔ [aXf] for a Scalar a IR

• energy of a sequence
• energy E(c) of c is the square of the amplitude: E(c) = |c|2.
• energy E(x) of a sequence x is the sum of all energies

of the sequence:
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Discrete Fourier Transformation (DFT)
Parseval’s theorem: Energy of a signal in a time range equals the 

energy in the frequency range.
Formal: Let X the DFT of x, then follows:

• consequence from Parseval’s theorem and the DFT’s linearity: The 
euclidean distance of two signals x and y correspond in time and 
frequency range: || x – y ||2 = || X – Y ||2

t
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t
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Discrete Fourier Transformation (DFT)
Basic Idea of query processing: 
The euclidean distance is used as a sequence’s similarity function:

• parseval’s theorem allows for distances to be calculated in the frequency 
range instead of the time range: dist(x,y) = dist(X,Y)

• in practice the lowest frequencies are the most important.
• the first frequency coefficients contain the most important information.
• for indexing the transformed sequences are shortened, for [Xf], f = 0, 1, 

…, n – 1 coefficients only the first c coefficients [Xf < c], c < n are 
indexed.

• for the index a lower bound of the true distance can be calculated:
filter-refinement:
• filter step is based on shortened time series (index assisted)
• refinement step determines true hits on complete time series
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Distances of Time Series

problems: Which points in time are to be compared?
• offset at the beginning: 

S2 is shifted in time to S1.

• clocking of reading: points in time of
measuring differ.

• length of time series: measuring
periods differ.

• time series with the same clocking and length can be compared as 
vectors. (dimension = point in time)

• for variable length, clocking and offsets: adaption of edit-distance 
for sequences => Dynamic Time Warping 
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Dynamic Time Warping Distanz
|q| = n

|o| = m
q

o

q

o

n1
1

m

w1

wk

i

j

calculation:
• given: time series q and o

of different length
• find mapping of all qi to o with minimal expense

Search 
matrix



48

Dynamic Time Warping Distance

Q

C

n1
1

m

w1

w
k

i

j

Search Matrix
• All possible mappings q to o can be interpreted as a „warping“ path 

within the search matrix
• Of all these mappings, we search for the path with the lowest cost

• Dynamic Programming
=> Run-time (n . m)
(see Edit Distances)


= ∑ =

KwoqDTW K

k k1
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Approximate Dynamic Time Warping Distance
idea:
• approximate the time series

(compressed representation, Sampling, …)
• calculate DTW for the approximates
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Statistic Models for Time

problem:
How is the time of the next action modeled?
⇒ statistic models for the time between two events is necessary.

⇒ time is a continuous variable => probability density function

⇒ task: compute the probability for the next event e occurring
within the time frame t+ t. 

⇒ the cumulative probability density function describes this probability
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Homogeneous Poisson Processes
• simplest process to model time

• points in time between 2 events are exponentially distributed

• probability density of the exponential distribution:
• integration yields the cumulative density function describing the 

probability of the next action happening in the time interval 
between 0 … x.

Density function of 
the exponential 
distribution

Accumulated density function of 
the exponential distribution

xexp ⋅−⋅= λ
λ λ)(
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λ λ)(

xexP ⋅−−= λ
λ 1)(



52

Parameter assessment 
given: A training set of points in time X={x1, …, xn}, which are distributed 

exponentially.
task: The most likely value for the intensity parameter.
Approximation with Maximum Likelihood
=> Search the value of λ with the highest probability of generating X. 

Likelihood function L for Sample X:

Differentiate the log-likelihood for λ and set the gradient to zero:
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Learning Goals

• Sequences and time series
• Frequent Subsequence Mining with Suffix-Trees
• Distance measuring sequences

• Hamming Distance
• Levenshtein Distance

• Markov-Chains
• Hidden Markov chains
• Time series and preprocessing steps
• Dynamic Time Warping
• Poisson processes
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