
1

Lecture Notes for
Managing and Mining Multiplayer Online Games

Summer semester 2017

Lecture Notes © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter 8: Temporal Analysis

2

Chapter Overview

• Behavior and Sequences
• Comparing Sequences
• Finding frequent subsequences
• Markov chains
• Hidden Markov-Chains
• Time series and feature-transformations
• Comparing time series
• Poisson-Processes

3

player behavior
examples for player behavior

• sequence of moves in chess
• sequence of movement, action and interaction in a MMORPG
• sequence of orders to units in RTS Games

• conceptionally behavior consists of a sequence of possible actions
• Simplest models for behavior are strings or sequences.

Definition: Let A={A1, …, An} be a finite alphabet of n possible player
actions, then the l-Tuple (a1, …, al) ∈ A×…×A is a sequence of l
length over A.

Remark:
• Model describes only observations and does not differentiate

between possible and impossible sequences.
• Model neglects the time between actions.

4

Example: SC II Zerg Rushes

5

Subsequences and Partitioning

• Which player is observed at a given time and for how long?
• The longer a player is observed, the less likely it becomes that

another player behaves similarly
• To find typical behavioral patterns a sequence is usually divided into

subsequences.
• Windowing (partitions a sequence)

Slide a window of length k over the sequence and consider all
subsequences. (here k = 3)

A B C V B W E E E R Q A F …

C V B W E E E R Q

Q A F

A B C R Q AE E E

E E RB W E

V B W

B C V

6

Subsequences and Partitioning

problem: A sequence of length l has l – (k-1) k-elemental sub-
sequences and many of those are irrelevant.

idea: Only sequences appearing with a certain frequency are
of interest.

Frequent Subsequence Mining
Find all subsequences in a sequence database appearing

more frequently than minsup. (cf. Frequent Itemset Mining)

⇒ length of the sequence is arbitrary.
⇒search space is larger than the search space of itemset

mining. (several occurrences of elements and orders)

7

Frequent Subsequence Mining

• frequency fr(S,G) of S in sequence G:
count occurrence of S in G

• relative frequency of S:

• sequence description of G:

• mining sequential patterns is well explored
=> many approaches and algorithms

{ }G S|G))(S, (S, (G) ∈= ϕδ

1||||
),(),(
−−

=
SG
GSfrGSϕ

8

Suffix Trees

Properties of a Suffix Tree ST for the alphabet A with sequence
G where |G| = n:
• to rule out ambivalence, words are padded with a terminal

symbol (A), commonly $.
• ST has exactly n+1 leaf nodes numbered from 0 to n, on the

way from the root to the leaf i the suffix of length n-i is filed.
• Edges represent elements of A{$} (uncompressed form), non-

empty partial-sequences of A{$} respectively
• Edges, emanating from the same starting node, must begin

with different elements of A.

Creation in O(|input string|), Search in O(|query string|)

9

Suffix Trees

• example: alphabet A ={eat, hunt, seek, flee, defend}
• insert:

S1 = (seek, hunt, eat, seek)
S2 = (seek, flee,hunt)

10

Suffix Trees

• example: Alphabet A ={eat, hunt, seek, flee, defend}
• insert:

S1 = (hunt, seek, eat, seek) (hunt, seek, eat, seek, $)
S2 = (seek, flee, hunt) (seek, flee, hunt, $)

root

4

3

2

$
seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$

1

$

$

$

uncompressed variant:
every edge is labeled with
an element of A{$}

compressed variant:
combine sub-paths without
branches into one edge

11

Suffix Trees

• example: Alphabet A ={eat, hunt, seek, flee, defend}
• insert:

S1 = (hunt, seek, eat, seek) (hunt, seek, eat, seek, $)
S2 = (seek, flee, hunt) (seek, flee, hunt, $)

root

4

3
2

$
seek

eat,seek,$

0

$

1

uncompressed variant:
Every edge is labeled with
an element of A{$}

compressed variant:
combine sub-paths without
branches into one edgehunt,seek,eat,seek,$

eat,seek,$

12

Suffix Trees

• example: Alphabet A ={eat, hunt, seek, flee, defend}
• insert:

S1 = (hunt, seek, eat, seek) (hunt, seek, eat, seek, $)
S2 = (seek, flee, hunt) (seek, flee, hunt, $)

root

4

3

2

$
seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$

1

$

$

$

root

4,3

3

2

$0 seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$0

1

$0

$

$00

flee

hunt

$1

2
$1

$1 1flee hunt

13

• example: Alphabet A ={eat, hunt, seek, flee, defend}
• sample queries:
− Is q a Suffix?
− Is q a Substring?
− How often occurs q?

Suffix Trees

root

4,3

3

2

$0 seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$0

1

$0

$

$00

flee

hunt

$1

2
$1

$1 1flee hunt

14

• Example: Alphabet A ={eat, hunt, seek, flee, defend}
• Sample request:
− Is q a Suffix?
=> follow path (q$) starting at root,
If reaching a leaf, then it is a Suffix
− Is q a Substring?
=> follow path (q) starting at root,
If processing possible,
then Substring
− How often occurs q?
=> follow path (q) starting at root,
#leaves below terminal nodes
= #Occurences

Suffix Trees

root
4,3

3

2

$0 seek

eat

seek

eat

seek seek

hunt

eat

seek

0

$0

1

$0

$

$00

flee

hunt

$1

2
$1

$1 1flee hunt

15

Interestingness of Subsequences

• interesting ≠ frequent
• common sequence: select drones, collect crystals, train

drone, …
but: the first actions in SC II are almost always identical.

• number of frequent subsequences can be very large.
• most of which describe standard game plays.
• interestingness should be evaluated in relation to

another attribute:
• Map (Relating to a place)
• Player (Relating to an individual)
• Strategy (Relating to situation)
• Combination of multiple relations

(Map and Strategy …)

16

Measures for Interestingness

use correlation measures:
• find a target variable: e.g. player_id
• find interesting events: e.g. boss-fights, flag bearer, …
• find places triggering similar behavior: spawning points,

flag delivery locations, boss encounter site, ...
• example calculations:

• Mutual Information

• Odds Ratio

)G(S,
)G(S,)G,(GoddsR

2

1
21S ϕ

ϕ
=

]Pr[Pr[S]
P]r[S,log],Pr[Player_ID)MI(S,

P }S,{S 11
P

PPS
Players S ⋅

⋅= ∑ ∑
∈ ∈

17

Use of frequent subsequences

• player identification: use the occurrence of the k-”most
interesting” partial sequences as vector space dimensions.

(here interesting = highest MI with player_id)
=> describe players as vectors of

observed subsequences.
• search locations specific behavior: compare the incidence

of actions on the map to the amount of actions in a given
location. (Odds-Ratio)

18

Comparing two Sequences

given: Alphabet A and a sequence database
DB {(x1, …, xk)| k∈ IN ∧ xi∈ A for1≤i≤k}.

task: compute the similarity of S1, S2 ∈ DB.
Hamming Distance: number of different entries over all positions.

For 2 sequences with |S1|=|S2|=k:

Remark: For sequences of different length, the shorter sequence is
filled with the gap symbol „-“.
example: S1 = (A,B,B,A,B) und S2 = (A,A,A,A,A)

(A,B,B,A,B)
(A,A,A,A,A)

DistHam (S1,S2)=3

∑
= 

 =

=
k

i

ii
Ham else

ssif
SSDist

0

,2,1

1
0

)2,1(

19

Levenshtein Distance

• Hamming Distance: Computing the minimum cost to
transform S1 into S2. Only substitutions of single elements
are allowed in doing so. (Turn B into A.)

• Hamming Similarity: Counts the number of similar
elements.

• idea: Extend the allowed transformations to include
deletion and insertion of symbols.

• Levenshtein Distance: Minimum expense to transform S1
into S2 using 3 operations Delete, Insert and Substitute.

(A,B,B,A,B)
(A ,A,B)

(A,B,B,A,B)
(A ,- ,- ,A,B) SimLev (S1,S2)=3

20

Calculating Levenshtein Distance

given: Two sequences S1, S2 over the alphabet A with |S1|=n and |S2|=m.
task: DistLev(S1,S2)
Calculating Levenshtein Distance with dynamic programming:
Let D be a n×m-Matrix over IN with:

After construction of matrix D, Dn,m contains the Levenshtein-distance
between both input sequences.

21

Example Levenshtein Distance

S1 = auto, S2 = ute

a u t-

-

u

t

e

o

1 2 30 4

1

2

3

a u t-

-

u

t

e

o

1 2 30 4

1 1 21 3

2 2 12 2

3 3 23 2

a u t-

-

u

t

e

o

1 2 30 4

1 11

a u t-

-

u

t

e

o

1 2 30 4

1 1 21 3

2 2 12 2

3 3 23 2

(a,u,t,o)
(-, u,t,e)

DistLev (S1,S2)=2

22

Edit Distances

• generalization of Levenshtein-Distances:
• different cost matrix: substitution costs 4, deletion 1, insertion 2..
• more operations:

• transposing order

• duplicating, …

• costs may differ for different values:
Subst.(A,B) ≠ Subst.(A,Z)

• works for sequences based on real-valued alphabets, for
example: For A = IR: Subst(5,1) = |5-1|

(A,B,B,A,B)
(A,B,A,B,B) 1 transposition

(A,B,B,B,B)
(A,B,)

3 duplicates of B

23

Markov Chains and Sequences

• sequences of actions are subject to certain rules
• modeling with finite automatons

(testing sequence for validity)
• Markov chains are probabilistic automatas:

• allowed state transitions
• probability distributions for state transitions.

• 1st order Markov assumption : The state at time t+1
depends solely on the state at timet.

• the order of a Markov chain is the number of predecessor
states on which the choice of the next state might depend.

24

First Order Markov-Chains
definition: A Markov chain M is defined for a state set A and a

stochastic transition-matrix |A|×|A| = D.
explanations:
• A may contain a start- and a absorption-state

(Modeling Start and End)
• stochastic Matrix: rows add up to 1.

(row i contains the distribution of successors for state i)
example:

A

B C

A B C-

-

A

B

C

0.3 0.3 0.40.0

0.25 0.5 0.150.1

0.5 0.4 0.00.1

0.1 0.7 0.10.1

1.04.07.04.015.03.0
)|()|()|()|()|()(

⋅⋅⋅⋅⋅=
−⋅⋅⋅⋅−= BPBBPCBPACPAPACBBp

25

Hidden Markov Models
training a Markov chain:
• break the training sequence down into 2-grams and

determe the relative frequency.
(How often is A followed by B?)

problem:
• observations often do not match the observed behavior:

• action log is available, but game-play
has to be analyzed

• incorrect execution obfuscates actual intentions
• analysis of an AI state changes

(observed actions may be employed in different states)

)(
)()|(

Afr
ABfrABP =

26

Hidden Markov Models

Definition: A Hidden Markov Model M is defined by a state set A, a
stochastic transition matrix |A|×|A| = D, an observation set B and a
stochastic output-matrix |A|×|B| = F.

Example: A={A,B,C}, B={1,2,3}

P(122): define all possible state triples, generated by 122 :
BAA, BAC

A

B C

A B C-

-

A

B

C

0.3 0.3 0.40.0

0.25 0.5 0.150.1

0.5 0.4 0.00.1

0.1 0.7 0.10.1

D 1 2 3

A

B

C

0.0 0.2 0.8

0.5 0.0 0.5

0.0 0.5 0.5

F
2

3

1

)|122()()|122()()122(BACPBACPBAAPBAAPP ⋅+⋅=

27

Use of HMM

• Evaluation: How likely is an observation
O=(o1,.., ok) with oi∈ B for the HMM (A,B,D,F)?

(Forward Estimation)

• Recognition: Given the observation O=(o1, …, ok) and the
HMM (A,B,D,F) which sequence (s1, …, sk) with si ∈ A
gives the best explanation for O? (Viterbi-Algorithm)

• Training: Given the observation O=(o1, …, ok), how can we
modify D and F to maximize P(O|(A,B,D,F))?

(Baum-Welch Estimation)

28

Evaluation: Forward Variables
given: O=(o1, …, ok) and (A,B,D,F)
task: P(O|(A,B,D,F))
naive solution: calculate P(O|S) for all k-elemental sequences S on A.

(number grows exponentially with k)
improved solution: utilize Markov assumption
define forward-variable αj(t) as

calculation by induction:

calculating with |A|2⋅k operations:

))(|,...,,,()(21 ABDFasoooPt jttj ==α

||1,)1(
1,, Ajfd ojjj ≤≤⋅= −α

11,)()1(1,,

||

1
−≤≤⋅








⋅=+ +

=
∑ ktfdtt otjji

A

i
ij αα

∑∑
==

===
||

1

||

1
)()),,,(|,()),,,(|(

A

i
i

A

i
it kFDBAasOPFDBAOP α

29

Recognition: Viterbi Algorithm

given: O=(o1, …, ok), and Model (A, B,D,F).
task: S=(s1, …, sk), which maximizes P(O|S,(A, B,D,F)).
• define δ(t) as the highest probability of a sequence on A

of length t for the observation O.

• calculation by induction

• similar to forward algorithm, but more efficient since
only the best solution is pursued.

)),,,(|,...,,(max)(11,.., 11

FDBAOssPt tssj
t

−
−

=δ

()

() 11,)(maxarg)1(
||1,0)1(

11,)(max)1(

||1,)1(

,
||1

,,||1

,,

1

1

−≤≤=+
≤≤=

−≤≤⋅




=+

≤≤⋅=

≤≤

≤≤

−

+

kjdtt
Aj

kjfdtt

Ajfd

jii
Ai

j

j

ojjiiAij

ojjj

t

δψ
ψ

δδ

δ

30

Backward Variables
analogously to Forward-Variable a Backward-Variable can be defined,
used in training the HMM.
define Backward-Variable βj(t) as

Calculation by Induction:

))(,|...,,()(1 ABDFasooPt jtktj == +β

||1,1)(Aiki ≤≤=β

kttfdt
A

j
jojjii t

≤≤⋅⋅=− ∑
=

2,)()1(
||

1
,, ββ

a1

an

ai

a2

.

.

.

d2,j

d1,j

dn,j

t-1

βj(t+1)

a1

an

aj

a2

.

.

.

dj,2

dj,1

dj,nαi(t)

t t+1 t+2

tojji fd ,, ⋅

31

Training: Baum-Welch Estimation

given: O=(o1, …, ok), A and B.
task: D, F, maximizing P(O|(A,B,D,F)).
• Locally optimize solution with Expectation Maximization (EM)
Define ξi,j (t) as the likelihood of being in state ai at the point in time t and
being in state aj at the point in time t+1 :

• Define γi (t) as the probability of being in state ai at the point in time t:

∑∑
= =

+

+⋅⋅

+⋅⋅
=

+⋅⋅
=

===

+

+

+

||

1

||

1
,,

,,

,,

1,

)1()(

)1()(
)),,,(|(

)1()(
)),,,(,|,()(

1

1

1

A

k

A

l
jollkk

jojjii

jojjii

jtitji

tfdt

tfdt
FDBAOP

tfdt
FDBAOasasPt

t

t

t

βα

βα

βα
ξ

∑
=

=
A

j
jii tt

0
,)()(ξγ

32

Training: Baum-Welch Estimation

• equals the expected number of state transitions
from ai to aj.

• equals the expected number of state transitions
from ai to other states.

• parameter are being recomputed as follows:

• training happens in alternating steps
• calculate of γi (t), ξi,,j (t) and P(O|(A,B,D,F))
• updates of D and F (updates see above)

• algorithm terminates when
P(O|(A,B,D,F)) grows less than .

∑
−

=

1

1
,)(

k

t
ji tξ

∑
−

=

1

1
)(

k

t
i tγ

∑

∑

∑

∑
−

=

=∈

−

=

−

=
− === 1

1

}{
,1

1

1

1
,

,,

)(

)(
,

)(

)(
,)1(k

t
i

bott
i

bjk

t
i

k

t
ji

jiia

t

t
f

t

t
dd lt

li

γ

γ

γ

ξ
γ

33

Real-Value Sequences

• so far: Alphabet is a discrete domain
• Sequences can also be created based on real-value

domains, for example IRd.
• Frequent Pattern Mining on real-value domains is usually

impossible.
• Comparing 2 real-value sequences on domain D with a

distance function dist: D D IR0
+.

• Analogous to Hamming Distance one can determine the sum of
distances for every position of the sequence.

• Extension of edit distance is als possible: Substitution cost for v
and u correlates to dist(v,u).

• (More details follow later for Dynamic Time Warping)

() () +

=

∈≥⋅−+=∑ IRSSfürSSssdistSSdist
S

i
iisequ ϕϕ ,,),(, 1212

||

1
,2,121

1

34

Time series
• so far: sequences model the order of actions, but not the

points in time.
but: in real time games timing is essential.
⇒ RTS games: build order are only effective if they can

be realized in minimal time.
⇒ in MMORPGs the damage caused depends on the

number of actions per time unit.
⇒ chess with chess clock: a move is also measured by

the time needed to think.
• time series: Let T be a domain to model time and let F

be an object presentation, then:
Z=((x1,t1),.., (xl,tl))∈(F×T)×.. ×(F×T) is a time series of
length l on F.

35

Examples for Time Series
• SC2-Logs: time series on discrete actions

• Network-Traffic:
• used in bot detection
• estimating game intensity

0:00 TSLHyuN Select Hatchery (10230)
0:00 TSLHyuN Select Larva x3 (1027c,10280,10284), Deselect all
0:00 TSLHyuN Train Drone
0:01 TSLHyuN Train Drone
0:01 TSLHyuN Select Drone x6 (10234,10238,1023c,10240,10244,10248),
Deselect all
0:01 TSLHyuN Right click; target: Mineral Field (10114)
0:01 TSLHyuN Deselect 6 units
0:02 TSLHyuN Right click; target: Mineral Field (10170)
….

36

Preprocessing Time series (1)

offset translation
• similar time series with

different offsets
• shifting all time series around the
• mean MW:

1 i |o|: oi = oi – MW(o)
0 50 100 150 200 250 3000

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300

0 50 100 150 200 250 300

q = q - MW(q)

o = o - MW (o)

dist(q,o) = ???

dist(q,o) = ???

q

o

37

preprocessing time series (2)
scaling amplitudes
• time series with similar progression but different amplitudes
• shifting the time series around the mean (MW) and normalizing the

amplitude by standard deviation (StD):
1 i |o|: oi = (oi – MW(o)) / StD(o)

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

q = (q - MW (q)) / StD(q)

o = (o - MW(o)) / StD(o)

38

preprocessing time series (3)
linear trends
• similiar time series with different trends

• Intuition:
• determine regression line
• move time series by means of this line

0 20 40 60 80 100 120 140 160 180 200
-4

-2

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200
-3

-2

-1

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200
-3

-2

-1

0

1

2

3

4

5

offset translation + amplitudes
scaling offset translation + Amplitudes scaling

+ linear trend-removal

39

Preprocessing time series (4)
rectifying noise
• similar time series with a large amount of noise
• smoothing: determine for every value oi the mean over

all values [oi-k, …, oi, …, oi+k] for a given k.

0 20 40 60 80 100 120 140
-4

-2

0

2

4

6

8

0 20 40 60 80 100 120 140
-4

-2

0

2

4

6

8

40

Discrete Fourier Transformation (DFT)
idea:
• describe arbitrary periodic functions as weighted sum of periodic

base functions with different frequencies. A time series turns into a
vector of constant length.

• base functions: sin and cos

41

Discrete Fourier Transformation (DFT)
Fourier’s theorem: A periodic function (which is reasonable
continuous) may be expressed as the sum of a series of sine and cosine
terms with a specific amplitude.

properties:
• transformation does not change a function, only the presentation
• transformation is reversible => inverse DFT
• analogy: change of base in vector calculation

t
n

… ti

t
0

t
1

t
2

[xt
]

f
n

… fj

f
0

f
1

f
2

[Xf]

DFT

42

Discrete Fourier Transformation (DFT)
formal:
• given a time series of length n: x = [xt], t = 0, …, n – 1
• the DFT of x is a sequence X = [Xf] of n complex numbers for the

frequencies f = 0, …, n – 1 with

where i identifies the imaginary unit viz. i2 = –1.
• the real part indicates the share of the cosine functions, whereas the

imaginary part indicates the share of sine functions of the frequency f.

Real part Imaginary part

∑∑

∑
−

=

−

=

−

=

⋅⋅⋅−







 ⋅⋅⋅

⋅−





 ⋅⋅⋅

=⋅=

1

0

1

0

1

0

2

2sin12cos1

1

n

t t
n

t t

n

t
n

tfi

tf

n
tfx

n
i

n
tfx

n

ex
n

X

ππ

π

43

Discrete Fourier Transformation (DFT)
• the inverse DFT restores the original signal:

t = 0, …, n – 1 (t: points in time)
[xt] ↔ [Xf] describes a Fourier-Paar,
viz. DFT([xt]) = [Xf] and DFT–1([Xf]) = [xt].

• the DFT is a linear map, viz. from [xt] ↔ [Xf]
and [yt] ↔ [Yf] follows:
• [xt + yt] ↔ [Xf + Yf] and
• [axt] ↔ [aXf] for a Scalar a IR

• energy of a sequence
• energy E(c) of c is the square of the amplitude: E(c) = |c|2.
• energy E(x) of a sequence x is the sum of all energies

of the sequence:

∑ −

=

⋅⋅⋅⋅

⋅=
1

0

21 n

f
n

tfi

ft eX
n

x
π

∑ −

=
==

1

0

22)(n

t txxxE

44

Discrete Fourier Transformation (DFT)
Parseval’s theorem: Energy of a signal in a time range equals the

energy in the frequency range.
Formal: Let X the DFT of x, then follows:

• consequence from Parseval’s theorem and the DFT’s linearity: The
euclidean distance of two signals x and y correspond in time and
frequency range: || x – y ||2 = || X – Y ||2

t
n

… ti

t
0

t
1

t
2

[xt
]

f
n

… fj

f
0

f
1

f
2

[Xf
]

DFT

„Time range (-space)“ „Frequency range (-space)“

∑∑ −

=

−

=
=

1

0

21

0

2 n

t f
n

t t Xx

45

Discrete Fourier Transformation (DFT)
Basic Idea of query processing:
The euclidean distance is used as a sequence’s similarity function:

• parseval’s theorem allows for distances to be calculated in the frequency
range instead of the time range: dist(x,y) = dist(X,Y)

• in practice the lowest frequencies are the most important.
• the first frequency coefficients contain the most important information.
• for indexing the transformed sequences are shortened, for [Xf], f = 0, 1,

…, n – 1 coefficients only the first c coefficients [Xf < c], c < n are
indexed.

• for the index a lower bound of the true distance can be calculated:
filter-refinement:
• filter step is based on shortened time series (index assisted)
• refinement step determines true hits on complete time series

∑ −

=
−=−=

1

0

2),(n

t tt yxyxyxdist

),(),(1

0

21

0

2
yxdistyxyxyxdist n

f ff
c

f ffc =−≤−= ∑∑ −

=

−

=

46

Distances of Time Series

problems: Which points in time are to be compared?
• offset at the beginning:

S2 is shifted in time to S1.

• clocking of reading: points in time of
measuring differ.

• length of time series: measuring
periods differ.

• time series with the same clocking and length can be compared as
vectors. (dimension = point in time)

• for variable length, clocking and offsets: adaption of edit-distance
for sequences => Dynamic Time Warping

0

5

10

0 2 4 6 8 10 12

0

5

10

0 5 10 15

0

5

10

0 2 4 6 8 10 12

),()2,1(2
1

1 t

T

t
tobjtimeseries ssdistSSDist ∑

=

=

47

Dynamic Time Warping Distanz
|q| = n

|o| = m
q

o

q

o

n1
1

m

w1

wk

i

j

calculation:
• given: time series q and o

of different length
• find mapping of all qi to o with minimal expense

Search
matrix

48

Dynamic Time Warping Distance

Q

C

n1
1

m

w1

w
k

i

j

Search Matrix
• All possible mappings q to o can be interpreted as a „warping“ path

within the search matrix
• Of all these mappings, we search for the path with the lowest cost

• Dynamic Programming
=> Run-time (n . m)
(see Edit Distances)


= ∑ =

KwoqDTW K

k k1
min),(

49

Approximate Dynamic Time Warping Distance
idea:
• approximate the time series

(compressed representation, Sampling, …)
• calculate DTW for the approximates

50

Statistic Models for Time

problem:
How is the time of the next action modeled?
⇒ statistic models for the time between two events is necessary.

⇒ time is a continuous variable => probability density function

⇒ task: compute the probability for the next event e occurring
within the time frame t+ t.

⇒ the cumulative probability density function describes this probability

51

Homogeneous Poisson Processes
• simplest process to model time

• points in time between 2 events are exponentially distributed

• probability density of the exponential distribution:
• integration yields the cumulative density function describing the

probability of the next action happening in the time interval
between 0 … x.

Density function of
the exponential
distribution

Accumulated density function of
the exponential distribution

xexp ⋅−⋅= λ
λ λ)(

x
x

edttpxP ⋅−−== ∫ λ
λλ 1)()(

0

xexp ⋅−⋅= λ
λ λ)(

xexP ⋅−−= λ
λ 1)(

52

Parameter assessment
given: A training set of points in time X={x1, …, xn}, which are distributed

exponentially.
task: The most likely value for the intensity parameter.
Approximation with Maximum Likelihood
=> Search the value of λ with the highest probability of generating X.

Likelihood function L for Sample X:

Differentiate the log-likelihood for λ and set the gradient to zero:

)(

1

1)(XEnn
x

n
n

i

x
X eeeL

n

i
i

i ⋅⋅−
⋅−

=

⋅− ⋅=
∑

⋅=⋅= =∏ λ
λ

λ λλλλ

)(
1

)())()ln(()(ln

*

XE

XEnnXEnn
d
dL

d
d

=⇒

⋅−=⋅⋅−⋅=

λ

λ
λλ

λ
λ

λ

n

x
XEmit

n

i
i∑

== 1)(

53

Learning Goals

• Sequences and time series
• Frequent Subsequence Mining with Suffix-Trees
• Distance measuring sequences

• Hamming Distance
• Levenshtein Distance

• Markov-Chains
• Hidden Markov chains
• Time series and preprocessing steps
• Dynamic Time Warping
• Poisson processes

54

Literature
• Kyong Jin Shim, Jaideep Srivastava: Sequence Alignment Based Analysis of

Player Behavior in Massively Multiplayer Online Role-Playing Games
(MMORPGs), in Proceedings of the 2010 IEEE International Conference on
Data Mining Workshops, 2010.

• Ben G. Weber, Michael Mateas: A data mining approach to strategy
prediction, in Proceedings of the 5th International Conference on
Computational Intelligence and Games, 2009.

• K.T. Chen, J.W. Jiang, P. Huang, H.H. Chu, C.L. Lei, W.C. Chen: Identifying
MMORPG bots: A traffic analysis approach, In Proceedings of the 2006 ACM
SIGCHI International Conference on Advances in Computer Entertainment
Tsechnology, 2006.

	Chapter 8: Temporal Analysis
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Foliennummer 47
	Foliennummer 48
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Foliennummer 52
	Foliennummer 53
	Foliennummer 54

