Density-Based Clustering

idea: Clusters are dense regions in feature space F.

density:
\[
\frac{|\text{objects}|}{\text{volume}}
\]

here:
- **volume**: ε-neighborhood for object o w.r.t. distance measure $\text{dist}(x,y)$
- **dense region**: ε-neighborhood contains MinPts objects
 $\Rightarrow o$ is called core point
- „connected“ core points form **clusters**
- Objects outside cluster is considered **noise**
Density-Based Clustering

intuition

parameters $\epsilon \in IR$ and $MinPts \in IN$ specify the density threshold

ϵ $MinPts = 4$
Density-Based Clustering

intuition

parameters $\varepsilon \in IR$ and $MinPts \in IN$ specify density threshold

- core points
Density-Base Clustering

intuition

parameters $\varepsilon \in \mathbb{IR}$ and $MinPts \in \mathbb{IN}$ specify density threshold

- core points
- direct density-reachability
Density-Based Clustering

intuition

parameters $\varepsilon \in IR$ and $MinPts \in IN$ specify density threshold

ε $MinPts = 4$

- core points
- direct density-reachability
- density reachability
Density-Based Clustering

intuition

parameters $\varepsilon \in IR$ and $MinPts \in IN$ specify density threshold

- core points
- direct density-reachability
- density reachability
- density connectivity
Density-Based Clustering

formal: [Ester, Krieger, Sander & Xu 1996]

- Object $p \in DB$ is a core object, if:
 - $|RQ(p, \varepsilon)| \geq MinPts$
 - $RQ(p, \varepsilon) = \{o \in DB \mid dist(p, o) \leq \varepsilon\}$

- Object $p \in DB$ is direct density reachable from $q \in DB$ wr.t. ε and $MinPts$, if:
 - $p \in RQ(q, \varepsilon)$ and q is a core object in DB.

- Object p is **density-reachable** from object q, if there is a sequence of direct density reachable objects from q to p.

- Two objects p and q are density-connected, if both p and q are density reachable from a third object o.

![Diagram](image)
Density-Based Clustering

formal:

A density-based cluster C w.r.t. ε and $MinPts$ is a none-empty subset of DB with the following properties:

Maximality: $p,q \in DB$: $p \in C$ and q is density-reachable from $p \Rightarrow q \in C$.

Connectivity: $p,q \in C \Rightarrow p$ and q are density-connected.
Density-Based Clustering

formal

• Clustering
 A density-based clustering CL of DB w.r.t. ε and $MinPts$ is the complete set of all density-based clusters w.r.t. ε and $MinPts$.

• Noise
 The set $Noise_{CL}$ is defined as the subset of objects in DB which are not contained in any cluster.

• idea behind the DBSCAN algorithm
 Let C be a density-based cluster and let $p \in C$ be a core object, then
 \[
 C = \{ o \in DB \mid o \text{ density reachable from } p \text{ w.r.t. } \varepsilon \text{ and } MinPts \}.
 \]
Density-Based Clustering

Algorithmus DBSCAN

\textbf{DBSCAN}(\text{dataset DB, Real } \varepsilon, \text{ Integer } \text{MinPts})

// in beginning all objects are unlabeled,
// o.ClId = UNLABELED for all o \in DB

\text{ClusterId} := \text{nextId(NOISE)};

\textbf{for i from 1 to } |\text{DB}| \textbf{ do}

\hspace{0.5cm} \text{Objekt} := \text{DB.get}(i);

\hspace{1cm} \textbf{if Objekt.ClId = UNLABELED then}

\hspace{1.5cm} \textbf{if ExpandCluster(DB, Objekt, ClusterId, } \varepsilon, \text{ MinPts) then ClusterId:=nextId(ClusterId);}
Density-Based Clustering

ExpandCluster(DB, startObject, clusterId, ε, MinPts): Boolean

seeds:= RQ(startObject, ε);
if |seeds| < MinPts then // startObject is not a core object
 startObject.ClId := NOISE;
 return false;

// else: startObject is a core object
forall o ∈ seeds do o.ClId := clusterId;
remove startObject from seeds;
while seeds ≠ Empty do
 select object o from seeds;
 neighborhood := RQ(o, ε);
 if | neighborhood | ≥ MinPts then // o is a core object
 for i from 1 to | neighborhood | do
 p := neighborhood.get(i);
 if p.ClId in {UNLABELED, NOISE} then
 if p.ClId = UNLABELED then
 add p to seeds;
 p.ClId := ClusterId;
 remove o from seeds;
 return true;
Discussion Density-Based Clustering

- Number of clusters is determined by the algorithm
- Parameters ε and MinPts generally less problematics
- Time complexity is $O(n^2)$ for general data objects
- Density-based methods only require a distance measure
- Border points make DBSCAN dependent on processing order
- No cluster model or parameter optimization
- Assigning new points is done with nearest neighbor classification
Hawkins’ Definition [Hawkins 1980]:
“An outlier is an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism.”

What does „mechanism“ mean?
• intuition from Bayesian statistics:
 “Outliers have a small likelihood to be generated by the assumed generative model.”
• connection to clustering:
 - a clustering describes the distribution of data
 - outliers describe errors/noise
⇒ max. distance to all cluster centers (part. clustering)
⇒ noise in density-based clustering
Example: distance-based Outliers

- Definition "(pct,dmin)-Outlier" [Knorr, Ng 97]
 - An object p in data set DB is called (pct,dmin)-outlier, if at least pct percent of the objects from DB have a large distance to p then $dmin$.

- Selection of pct and $dmin$ is left to the user

- example: $p_1 \in DB$, $pct=0.95$, $dmin=8$

- p_1 is a (0.95,8)-outlier
 $=> 95\%$ of objects in DB display a distance > 8 to p_1
Frequent Pattern Mining

until now: patterns describe subsets of DB
idea: patterns might be parts of object description
here: patterns are identical parts in object descriptions from large subsets of DB
example: group composition in MMORPG:

<table>
<thead>
<tr>
<th>Group</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp1</td>
<td>priest, mage, druid, rogue, warrior</td>
</tr>
<tr>
<td>Grp3</td>
<td>mage, mage, hunter, priest, warrior</td>
</tr>
<tr>
<td>Grp4</td>
<td>warlock, paladin, shaman, warrior, priest</td>
</tr>
<tr>
<td>Grp5</td>
<td>priest, warrior, hunter, rogue, warrior</td>
</tr>
</tbody>
</table>

warrior, priest, ?, ?, ?
Directions in Frequent Pattern Mining

- **Frequent Itemset Mining** (⇒ KDD1 and in the following)
 objects are subsets of items
 ⇒ find frequent subsets

- **Frequent Substring Mining** (⇒ next chapter)
 data objects are string/sequences over a discrete alphabet
 ⇒ find frequent subsequences

- **Frequent Subgraph Mining** (⇒ KDD2)
 data objects are graphs with discrete labels for nodes and/or edges
 ⇒ find frequent groups of isomorphic subgraphs

- **Rule Mining**: find rules based on frequent patterns:
 If pattern A is present in a data object, then its extension A+B is present with likelihood p.
Basic on Frequent Itemsets (1)

- **items** $I = \{i_1, \ldots, i_m\}$ is a set of literals
 e.g., all articles in a shop

- **itemset** X: subset of items $X \subseteq I$
 e.g., a set of items purchased together

- **transaction** $T = (\text{tid}, X_T)$ where tid is the transaction ID and $X_T \subseteq I$ is the complete itemset in the transaction
 e.g., all items being purchased together and the corresponding invoice number

- **database** DB: set of transactions T
 e.g., the set of all purchases in a certain time interval

- Items in itemsets can be sorted **lexicographical**:
 itemset $X = (x_1, x_2, \ldots, x_k)$, where $x_1 \leq x_2 \leq \ldots \leq x_k$

- **length of an itemset**: $|X|$: number of items in X

- **k-Itemset**: an itemset of length k

 \{butter, bread, milk, sugar\} is a 4-itemset

 \{flour, sausage\} is a 2-itemset
Basics on Frequent Itemsets (2)

- **cover** of itemset X: set of transactions T containing X:
 \[
 \text{cover}(X) = \{ \text{tid} \mid (\text{tid}, X_T) \in DB, X \subseteq X_T \}
 \]

- **support of itemsets** X in DB: number of transactions containing X:
 \[
 \text{support}(X) = |\text{cover}(X)|
 \]
 remark: $\text{support}(\emptyset) = |DB|$

- **frequency of itemsets** X in DB:
 relative frequency of X being contained in any $T \in DB$:
 \[
 \text{frequency}(X) = P(X) = \frac{\text{support}(X)}{|DB|}
 \]

- **frequent itemset** X in DB:
 \[
 \text{support}(X) \geq s \quad (0 \leq s \leq |DB|)
 \]
 s is an absolute threshold
 alternative: $\text{frequency}(X) \geq s_{\text{rel}}$ where $s = \lceil s_{\text{rel}} \cdot |DB| \rceil$
Given:
- a set of items \(I \)
- a transaction database \(DB \) over \(I \)
- an absolute frequency threshold \(s \)

Task: Find all frequent itemsets in \(DB \), i.e. \(\{ X \subseteq I \mid \text{support}(X) \geq s \} \)

<table>
<thead>
<tr>
<th>TransaktionsID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>A,B,C</td>
</tr>
<tr>
<td>1000</td>
<td>A,C</td>
</tr>
<tr>
<td>4000</td>
<td>A,D</td>
</tr>
<tr>
<td>5000</td>
<td>B,E,F</td>
</tr>
</tbody>
</table>

Support of 1-itemsets:
- \(A \): 75\%,
- \(B \), \(C \): 50\%,
- \(D \), \(E \), \(F \): 25\%,

Support of 2-itemsets:
- \(A, C \): 50\%,
- \(A, B \), \(A, D \), \(B, C \), \(B, E \), \(B, F \), \(E, F \): 25\%
Apriori Algorithm [Agrawal & Srikant 1994]

- start by computing 1-itemsets, 2-itemsets and so on. (breadth-first search)

- find all frequent \(k+1 \)-itemsets:
 - Consider only those \(k+1 \) itemsets for which all \(k \)-itemsets are frequent

- Determine support by scanning all transactions in DB (only one Scan)
Apriori Algorithm

C_k: candidate set of potentially frequent items of length k

L_k: set of all frequent itemsets of length k

Apriori(I, DB, $minsup$)

$L_1 := \{\text{frequent 1-Itemsets aus } I\}$;

$k := 2$;

while $L_{k-1} \neq \emptyset$

\[C_k := \text{AprioriCandidateGeneration} \left(L_{k-1} \right); \]

for each Transaktion $T \in DB$ do

\[CT := \text{Subset}(C_k, T); // all candidates C_k contained in T \]

for each candidate $c \in CT$ do

\[c\.count++; \]

$L_k := \{c \in C_k \mid c\.count \geq minsup\};$

$k++;$

return $\bigcup_k L_k$;
requirements to candidate itemsets:

- $C_k \supseteq L_k$
- $|C_k|$ should be much smaller than the set of all possible k-itemsets

Step 1: Join

- p and q are frequent $(k-1)$-itemsets
- Join p and q if they share a common $(k-2)$-prefix

$p \in L_{k-1}$
\[(\text{beer, chips, pizza}) \]

$q \in L_{k-1}$
\[(\text{beer, chips, wine}) \]
Candidate generation(2)

step2: pruning
remove all candidate k-itemsets containing non-frequent k-1-itemsets

example:
\[L_3 = \{(1 \ 2 \ 3), \ (1 \ 2 \ 4), \ (1 \ 3 \ 4), \ (1 \ 3 \ 5), \ (2 \ 3 \ 4)\} \]

after join step: candidates = \{(1 \ 2 \ 3 \ 4), \ (1 \ 3 \ 4 \ 5)\}
pruning step:
 delete (1 \ 3 \ 4 \ 5) since (1 \ 4 \ 5) is not frequent
=> \[C_4 = \{(1 \ 2 \ 3 \ 4)\} \]
Example Apriori Algorithms

Example Database (TID Items)

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 3 4</td>
</tr>
<tr>
<td>200</td>
<td>2 3 5</td>
</tr>
<tr>
<td>300</td>
<td>1 2 3 5</td>
</tr>
<tr>
<td>400</td>
<td>2 5</td>
</tr>
</tbody>
</table>

Scan DB

C1

<table>
<thead>
<tr>
<th>itemset</th>
<th>sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
</tr>
<tr>
<td>{2}</td>
<td>3</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{4}</td>
<td>1</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
</tbody>
</table>

L1

<table>
<thead>
<tr>
<th>itemset</th>
<th>sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
</tr>
<tr>
<td>{2}</td>
<td>3</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
</tbody>
</table>

L2

<table>
<thead>
<tr>
<th>itemset</th>
<th>sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 5}</td>
<td>3</td>
</tr>
<tr>
<td>{3 5}</td>
<td>2</td>
</tr>
</tbody>
</table>

Scan DB

C2

<table>
<thead>
<tr>
<th>itemset</th>
<th>sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 2}</td>
<td>1</td>
</tr>
<tr>
<td>{1 3}</td>
<td>2</td>
</tr>
<tr>
<td>{1 5}</td>
<td>1</td>
</tr>
<tr>
<td>{2 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 5}</td>
<td>3</td>
</tr>
<tr>
<td>{3 5}</td>
<td>2</td>
</tr>
</tbody>
</table>

L3

<table>
<thead>
<tr>
<th>itemset</th>
<th>sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{2 3}</td>
<td>2</td>
</tr>
</tbody>
</table>

C3

<table>
<thead>
<tr>
<th>itemset</th>
</tr>
</thead>
<tbody>
<tr>
<td>{2 3 5}</td>
</tr>
</tbody>
</table>

Scan DB
What you should know by now

• What is data mining and KDD?
• Steps in the KDD process
• What is supervised learning?
 • linear regression
 • kNN Classification
 • Bayesian learning
 • metrics for supervised learning
• What is unsupervised learning?
 • clustering (k-means, DBSCAN)
 • outlier detection (distance-based outliers)
 • frequent pattern mining
 (frequent itemset mining, apriori algorithm)
Literatur

- **script KDD I:**
 http://www.dbs.ifi.lmu.de/cms/Knowledge_Discovery_in_Databases_I_(KDD_I)

- Ester M., Sander J.:
 Knowledge Discovery in Databases: Techniken und Anwendungen

- Han J., Kamber M., Pei J.:
 Data Mining: Concepts and Techniques

- H.-P. Kriegel, M. Schubert, A. Zimek
 Angle-Based Outlier Detection in High-dimensional Data
 In Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Las Vegas, NV: 444–452, 2008.

 OPTICS: Ordering Points To Identify the Clustering Structure