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Overview

• What is Knowledge Discovery and Data Mining?
• KDD Process
• Supervised Learning

• Classification
• Prediction

• Unsupervised Learning
• Clustering 
• Outlier Detection

• Frequent Pattern Mining
• Frequent Itemsets
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Definition: Knowledge Discovery in Databases

[Fayyad, Piatetsky-Shapiro & Smyth 1996]

Knowledge Discovery in Databases (KDD) is the nontrivial 
process of identifying valid, novel, potentially useful, and 
ultimately understandable patterns in data.

Remarks:
• valid: in a statistic sense.
• novel: not explicitly known yet,

no common sense knowledge.
• potentially useful: for a given application.
• ultimately understandable: the end user should be able to 

interpret the patterns either immediately or after some 
postprocessing
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Knowledge Discovery Process

• Knowledge Discovery is a process comprising several steps.
• The KDD process is iteratively optimized (back arrow) until the result 

is acceptable.
• It is important what’s the purpose of the analysis.

success
metrics

pattern
and
function

Selection

Preprocessing

Transformation

Data Mining

Evaluation
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Steps of a KDD-Process

• Selection: Determining a clear objective and approach.
Example: Use of a recording of TCP-Traffic to train a 
prediction model, which recognizes if a player is 
controlled by a bot.

• Preprocessing: Selection, integration and ensuring 
consistency of data to analyze.
Example: Saving records of normal players’ and bots’ 
network traffic. Integration of data from several servers. 
Elimination of too short or useless records
(permanently AFK).



6

Steps of a KDD-Process

• Transformation: Transforming date into an analyzable 
form.
Example: Create a vector from average package rates, 
length and burstiness key-figures.

• Data Mining: Use efficient algorithms to derive statistically 
significant patterns and functions from transformed data.
Example: Training of a neural network with examples for 
bots and human players, to predict a new record if it is a 
bot.
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Steps of a KDD-Process

• Evaluation: test the quality of the patterns and functions 
gained from data mining.
• Compare expected and predicted results.

(Rate of error)
• Manual evaluation by experts (Does the result make sense?)
• Evaluation based on mathematical characteristics of patterns

Example: Testing an independent set of test-recordings on how 
likely the neural network predicts a bot with more than 50% 
confidence.

• Conclusion:
• If test results are unsatisfying, the process is adapted.
• Adaption is possible in every step: more training data, 

different algorithms, different parameters, …
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Prerequisites for Application

• Patterns and Frequency
• Patterns have to exist in some way and must be recognizable.
• Data should be correlated to the desired outcome.

• Generalization and Overfitting
• Transferring knowledge to new objects requires comparability / 

similarity to already analyzed data.
• The less information describes an object, the more objects are 

comparable. The more properties are considered, the more 
different objects become.

• Valid in a statistic sense
• Knowledge has room for errors => no absolute rules.
• Useful knowledge does not need to be 100% correct, it needs to 

be significantly better than guessing.
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Overfitting

Over adaption of models to given data objects
=> insufficient transferability to other data objects

Factors favoring overfitting:
• Complexity of object description: The more information are 

available, the less likely two objects are similar to each other.
• Specificity of attribute values: The more unique an attribute value, 

the less it contributes to differentiate many elements by similarities. 
(example: Object_ID)

• Model complexity: The more complex a function or a pattern, the 
easier it adapts to the given objects.

Goal: Model, attributes and object description should not describe one 
individual, but all objects belonging to the same pattern (class, 
cluster).



10

Featurespace, Distance and Similarity Measure

Similarity: Objects that are comparable within the context.
Example: 2 Players, who are controlled by the same bot are 

likely to create similar network-traffic.
• Feature Space: data  mining algorithms’ perspective on objects. 

(Features, Structure, Values range, …)
• Similarity Measure: calculates similarity based on feature-space. 

(the higher, the more similar)
• Distance Value: calculates difference between two object descriptions. 

(the higher, the more dissimilar)

IMPORTANT:  Feature Space and Similarity Measure are dependent:
• Changing the feature space changes the result of the measure.

• Similarity measure may only use parts of the description or may 
recombine existing elements.
(equivalent to transforming the freature space)
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Formal definition of distance function

Distance function: Let F be a feature space.
dist : F×F→ IR+

0 is called a distance function if the following 
properties hold:

• ∀p,q∈F, p≠q : dist(p,q) > 0 
• ∀o∈F: dist(o,o) = 0
• ∀p,q∈F: dist(p,q) = dist(q,p) 

Additionally, if  
∀o,p,q ∈Dom : dist(o,p) ≤ dist(o,q) + dist(q,p)

holds, dist ist called a metric.

reflexivity

symmetry

strictness

triangle inequality
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Vectors as Object Presentation

FeatureVectors: standard representation in most algorithms
basic idea:
• feature: property describing an object.

example: average packages per second
• types of features: 

• nominal: equality and inequality (example: name)
• ordinal: values are ordered (example: position in ranking)
• numerical: differences of values are quantifiable

(level (discrete), package-rate (metric), …)

• Feature Vector: Set of all describing features
example:(name, guild rank, level, package rate, package size)

• There is a variety of algebraic functions and laws usable for analysis of  
purely numerical data.
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The Lp-Metrics 

Euclidian Norm (L2):

q
p

Manhattan-Norm (L1):

q
p

Maximums-Norm (L∞):

p
q

sum of the absolute
differences 

dissimilarity of the 
least similar feature
is relevant

natural distance

General formula for Lp-distance:
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Norms, Similarity and Kernel Functions

• euklidian distance: length of vector difference
• length of a vector: norm of the vector
• norm: square root of self inner product 
• properties of the inner product:

• connection between inner product, norms and metrics:

(inner products imply norms and norms imply metrics)
• inner products are often used as similarity measures.

(in this context they are called kernel functions.)
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Supervised Learning
Idea: Learning from example objects to optimise a predictive function.
given:
• target variable C

(classification: Set of nominal values, regression: numerical Values)
• objects: DB∈ F×C: Object o=(o.v,o.c)∈ DB
• training set: T ⊆ DB of which o is fully known.

goal: function f: F → C, mapping object representation to values of the 
target variable with minimal error.

error function: quantifies the quality of the model on T.
square loss/ quadratic error: 

absolute error: 
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Training Supervised Methods

• given the type of the function f ,e.g., linear model

• adapt f to training set T by modifying paramter θ
example: f univariate linear function:

training: minimize loss function
• Loss function L describes the error of f  for T
• search parameters θ* minimizing L
• approach: build the gradiet of L for θ

and compute the minimum θ*.
=> convex loss functions are beneficial

(the only extremum is the minimum)
=> general loss functions might have multiple local minima and

training can get stuck at suboptimal parameters
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Example: 2D linear  regression

given: Trainingsmenge T∈ IR2

model:
loss function: 

gradient for θ0:

gradient for θ1:
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Further Comments on Supervised Learning

• regularization: Often parameters θ can grow unrestricted allowing 
overfitting.
=> integrate regularization term to restrict the allowed solutions
example: linear ridge regression

• often optimization are more complicated by considering constraints
(quadratic programs, semi definite programs, …)

• loss functions do not have to be convex (neural networks)
=> optimization minimizes the loss until local convergence 

• there are other approaches to supervised learning not minimizing a 
loss function, e.g., maximize the likelihood, 
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Instance-based Learning

idea: search the most similar objects in training set T and a 
use their target variables to estimate the target value.

two components:

• decision set of similar training objects:
• depends on similarity/distance measure (k-nearest neighbors in T)
• size of decision set  k describes the generalization of the method

• compute the predicton
• use majority vote (classification)/ mean (regression)
• distance weighted votes ( e.g., quadratic inverse weighting: 

1/d(q,x)2)
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Bayesian Learning

idea: each observation is generated by a hidden statistical
distribution/process.

Given a set of these distributions allows to determine the most likely
explanation for any new observation.

example: Bot-Detection
given:  model A:  humanplayer, model B: Bot player

observation v (vector describing network traffic)
assumption: v follows either A or B.
task: compute the likelihood that v was generated by B.
solution: compute P(B|v) = likelihood of B given that v was already
observed

caution: do not confuse with P(v|B) = likelihood that B generates vector v
It might be very unlikely that B exactly generates v.
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Rule of Bayes

How to compute the likelihood of B generating the given observation v.

• we assume p(v) =p(A)⋅p(v|A)+p(B)⋅p(v|B),
here: P(B), P(A) are called prior probabilities describing the general 
ratio of instances from B and A. (How much Bots are out there?)

=> the above formula implies that even if p(v|A) < p(v|B) it might be more 
likely that v is caused by a bot because bots might be very rare.

Generally:

• rule of Bayes:

• for all distributions C and observation v it holds:

(the observation has to follow a known model) 
• therefore,      is the most likely distribution

(class/value)
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Training Bayes Classifiers
• prior distribution P(c) are approximated as the ration of class 

members in the training set T
(17 out of 100 traffic snippets were generated by bots: P(B) =17%)

• to compute p(v|c) we assume a certain type of distribution
• in the most simple case training is done be computing relative 

probabilties in T.

example: consider two dices
• possible results: {1, 2, 3, 4, 5, 6}
• dice D1 is uniform distributed: 1/6 for all number from 1 to 6
• distribution for dice D2 : 1: 1/12, 2: 1/12, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/3 
• p(v=1|D1) = 1/6, p(v=6|D2)=1/3
• given: P(D1)= 0.2 und P(D2)=0.8:

9
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Univariate Distributions

• discrete probability spaces:
• finite number of events 
• separate estimation for all basic events

• real valued distributions:
• infinite number of events

(each event has a probability 1/∞->0)
• estimation of using density functions

(e.g. normal distributions)
• training = estimate parameters of the density

function (e.g., mean and variance)
• to compute probabilities from density functions 

either integrate over an interval of events or 
apply the rule of Bayes to determine relative 
densities.
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Statistic Models

considering multiple features vi requires joint estimates of 
p(v1, …,vd|c) .
problem: How to consider correlations betweent v1, …, vd ?
• naive approach: consider all objects as independent => naive Bayes

pro: easy estimation and computation

con: limited expressiveness

• complete dependency: estimate joint probabilities for all value 
combinations (v1, …,vd)
pro: any correlation might be considered
con: number of possible events increases exponential in d
=> usually not enough training data
=> large models and slow training

• advances solutions allow to consider some correlations but not all
(e.g., Bayes networks, graphical models,etc.)
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Evaluating Supervised Learners

• optimization on the training data not inclusive

⇒ generalization: how good does the method work on 
unknown data

• it is necessary to test classifiers and predictors on 
previously unknown and independent samples
(Train and Test)

• problem: Usually, there is not enough labeled data 
providing a correct target value.
=> ground truth is rare
=> manual labeling is cumbersome and expensive 
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Testing Supervised Predictors

goal:
• apply train and test set to as many instances as possible
• avoid overfitting (train and test set are disjunctive)

• Leave-One-Out:
• perform n tests for n data objects
• each element is picked once for testing and the rest is used for 

training
• results are reproducible
•maximum test effort (requires to train n predictors)
• only applicable to small data sets or instance-based methods
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Stratified k-fold Cross Validation

• similar to leave-one-out. Build k folds and perform leave-one-out on 
folds instead of instances

• stratification: the class distribution in each fold is the same as in the 
complete data set. (each class is approx. represented by the same 
number of objects in each fold)

• the number of folds k controls the effort (the larger the more effort)

• result of k-fold cross validation depends on the sampling of the folds
=> results can vary when shuffling the data
=> k-fold cross validation might be applied several times on different  
shufflings to avoid this effect
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1 fold:
1 a2 b

3 c
test set

classifier

train set

classification
results

1 a2 3 b c
set of all labeled data objects

2 fold:
1 a3 c

2 b
test set

classifier

train set

classification
results

3 fold:
2 b3 c

1 a
test set

classifier

train set

classification
results

green boxes: class 1 (folds:1, 2, 3) 
blue boxes: class 2 (folds: a, b, c)

joint
classification

result

Example: Stratified 3-fold Cross Validation
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Evaluating Classification Results

raw test result: confusion matrix

class 1    class 2  class 3  classe 4 class 5

class 1

class 2

class 3

class 4

class 5

35 1 1
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3
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Based on the confusion matrix the following measures are derived:
classification accuracy, classification error, precision, recall, F1-measure

correct
classifier
objects
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Classification Metrics
• let f be a classifier, TR be the training set, TE be the test set

• o.c is the real class of object o

• f(o) is the predicted class of o

• classification accuracy of f onTE:

• true classification error of f on TE:

• apparent classification error on TR (used to determine overfitting)

||
|}.)(|{|)(

TE
coofTEofGTE

=∈
=

||
|}.)(|{|)(

TE
coofTEofFTE

≠∈
=

||
|}.)(|{|)(

TR
coofTRofFTR

≠∈
=



31

Classification Metrics

• Recall:
ratio of correctly classified instances of 
class i.  Let Ci= {o∈ TE | o.c = i}, then
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• Precision:
ratio of objects being correctly assigned to 
class i. Let Ki= {o∈ TE | f(o) = i}, then
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Unsupervised Learning

problem setting: only unlabeled objects/no classes or target values
tasks:
• find groups of similar objects. (Clustering)
• find uncommon objects. (Outlier Detection)
• find parts of objects which occure often (Pattern Mining)
pro:
• results are based on less assumptions
• no labeling required
con: 
• measuring the results if often a problem (manual evaluation)
• more flexibility often implies more computational complexity
• correlating the result to the actual target is difficult without examples

(how to guide the algorithm to achieve the goal of the process)
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Example Applications

• Clustering: Determine typical tactics for a particular boss 
encounter.

• Outlier Detection: Which player might cheat?

• Pattern Mining: Determine standard rotations of abilitiy
usage.
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Clustering Methods

• identify a finite set of clusters or groups 

• similar objects should be part of the same cluster whereas 
dissimilar objects should be part of different clusters

• clustering comprises finding the clusters and assigning 
new objects to these clusters
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Clustering (formal view)
given:

• dataset DB ⊆ F (F is a feature space)
• C ⊆ IN0  a discrete target variable (cluster id)
• sometimes the number of clusters |C| is assumed to be known

goal: find function  f: F → C assigning ojbects to clusters.
find reasonable clusters(e.g. Minimize intra cluster distance and 
maximize distance between clusters)

quality of  a clustering: 
• depends on the cluster model:

• How is an object assigned to a cluster?

• How is decided whether two objects belong to the same custer?

• optimize:
• compactness of clusters

• cluster separation
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Partitioning Clustering(1)

idea: 
• there a k clusters and each cluster c is represented by oc

• object o is assigned to c by the distance dist(oc,o): 

• to achieve compact clusters minimize:
• average distance of objects to the closest clusters: 

• mean squared distance to the closest cluster: 

• Quality of the comlet clustering :
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Partitionierendes Clustering (2)

• typical cluster representations:
• centroid:

• medoid:

minimize TD or TD2:
• TD and TD2 are not konvex and might have multiple local minima
• TD and TD2 are discontinuous (e.g. when switching clusters)
• apply greedy search to minimize TD/ TD2 

1. Step: for all o ∈ DB cluster(o) is known
=> compute cluster representations {oc1, …, ocn }

2. Step: given the cluster representation {oc1, …, ocn }
=> assign all objects to their closest clusters and go to step 1

3. terminate if TD/ TD2 do not change (no cluster switch => local 
minimum)
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Example: Partitioning Clustering
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Algorithm
ClusteringVarianceMinimization(Objectset DB, Integer k)

build initial clustering by splitting DB into k Cluster;
Compute representatives C’={C1, ..., Ck}
C = {}; 
TD2 = sqrTD(C’,DB);
repeat

TD2old = TD2;
C = C’;
build k clusters by assigning each object to the next 
centroid in C; 

compute the new representatives C’={C’1, ..., C’k};
TD2 = sqrTD(C’,DB);

until TD2 == TD2old;
return C;
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Partitioning Clustering

variants:
• k-Means: update a single object and then recompute affected 

centroids.
• Expectation Maximation Clustering (EM)

cluster=density distribution, Bayesian model, soft-clustering
• k-Medoid Clusterings: 

• cluster representations are mediods
• cluster adaption is done by switiching objects and medoids

properties:
• all algorithms depend on the initialization

• centroid-based are very efficient O(i ⋅ n ⋅ k). (#Iterations i)
• medoid-based are generic but slow O(i ⋅ n2 ⋅ k) (#Iterationen i)
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