
1

Lecture Notes
Managing and Mining Multiplayer Online Games

Summer semester 2017

Lecture Notes © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter 6: Data Analytics
in a Nutshell

2

Overview

• What is Knowledge Discovery and Data Mining?
• KDD Process
• Supervised Learning

• Classification
• Prediction

• Unsupervised Learning
• Clustering
• Outlier Detection

• Frequent Pattern Mining
• Frequent Itemsets

3

Definition: Knowledge Discovery in Databases

[Fayyad, Piatetsky-Shapiro & Smyth 1996]

Knowledge Discovery in Databases (KDD) is the nontrivial
process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data.

Remarks:
• valid: in a statistic sense.
• novel: not explicitly known yet,

no common sense knowledge.
• potentially useful: for a given application.
• ultimately understandable: the end user should be able to

interpret the patterns either immediately or after some
postprocessing

4

Knowledge Discovery Process

• Knowledge Discovery is a process comprising several steps.
• The KDD process is iteratively optimized (back arrow) until the result

is acceptable.
• It is important what’s the purpose of the analysis.

success
metrics

pattern
and
function

Selection

Preprocessing

Transformation

Data Mining

Evaluation

5

Steps of a KDD-Process

• Selection: Determining a clear objective and approach.
Example: Use of a recording of TCP-Traffic to train a
prediction model, which recognizes if a player is
controlled by a bot.

• Preprocessing: Selection, integration and ensuring
consistency of data to analyze.
Example: Saving records of normal players’ and bots’
network traffic. Integration of data from several servers.
Elimination of too short or useless records
(permanently AFK).

6

Steps of a KDD-Process

• Transformation: Transforming date into an analyzable
form.
Example: Create a vector from average package rates,
length and burstiness key-figures.

• Data Mining: Use efficient algorithms to derive statistically
significant patterns and functions from transformed data.
Example: Training of a neural network with examples for
bots and human players, to predict a new record if it is a
bot.

7

Steps of a KDD-Process

• Evaluation: test the quality of the patterns and functions
gained from data mining.
• Compare expected and predicted results.

(Rate of error)
• Manual evaluation by experts (Does the result make sense?)
• Evaluation based on mathematical characteristics of patterns

Example: Testing an independent set of test-recordings on how
likely the neural network predicts a bot with more than 50%
confidence.

• Conclusion:
• If test results are unsatisfying, the process is adapted.
• Adaption is possible in every step: more training data,

different algorithms, different parameters, …

8

Prerequisites for Application

• Patterns and Frequency
• Patterns have to exist in some way and must be recognizable.
• Data should be correlated to the desired outcome.

• Generalization and Overfitting
• Transferring knowledge to new objects requires comparability /

similarity to already analyzed data.
• The less information describes an object, the more objects are

comparable. The more properties are considered, the more
different objects become.

• Valid in a statistic sense
• Knowledge has room for errors => no absolute rules.
• Useful knowledge does not need to be 100% correct, it needs to

be significantly better than guessing.

9

Overfitting

Over adaption of models to given data objects
=> insufficient transferability to other data objects

Factors favoring overfitting:
• Complexity of object description: The more information are

available, the less likely two objects are similar to each other.
• Specificity of attribute values: The more unique an attribute value,

the less it contributes to differentiate many elements by similarities.
(example: Object_ID)

• Model complexity: The more complex a function or a pattern, the
easier it adapts to the given objects.

Goal: Model, attributes and object description should not describe one
individual, but all objects belonging to the same pattern (class,
cluster).

10

Featurespace, Distance and Similarity Measure

Similarity: Objects that are comparable within the context.
Example: 2 Players, who are controlled by the same bot are

likely to create similar network-traffic.
• Feature Space: data mining algorithms’ perspective on objects.

(Features, Structure, Values range, …)
• Similarity Measure: calculates similarity based on feature-space.

(the higher, the more similar)
• Distance Value: calculates difference between two object descriptions.

(the higher, the more dissimilar)

IMPORTANT: Feature Space and Similarity Measure are dependent:
• Changing the feature space changes the result of the measure.

• Similarity measure may only use parts of the description or may
recombine existing elements.
(equivalent to transforming the freature space)

11

Formal definition of distance function

Distance function: Let F be a feature space.
dist : F×F→ IR+

0 is called a distance function if the following
properties hold:

• ∀p,q∈F, p≠q : dist(p,q) > 0
• ∀o∈F: dist(o,o) = 0
• ∀p,q∈F: dist(p,q) = dist(q,p)

Additionally, if
∀o,p,q ∈Dom : dist(o,p) ≤ dist(o,q) + dist(q,p)

holds, dist ist called a metric.

reflexivity

symmetry

strictness

triangle inequality

12

Vectors as Object Presentation

FeatureVectors: standard representation in most algorithms
basic idea:
• feature: property describing an object.

example: average packages per second
• types of features:

• nominal: equality and inequality (example: name)
• ordinal: values are ordered (example: position in ranking)
• numerical: differences of values are quantifiable

(level (discrete), package-rate (metric), …)

• Feature Vector: Set of all describing features
example:(name, guild rank, level, package rate, package size)

• There is a variety of algebraic functions and laws usable for analysis of
purely numerical data.

13

The Lp-Metrics

Euclidian Norm (L2):

q
p

Manhattan-Norm (L1):

q
p

Maximums-Norm (L∞):

p
q

sum of the absolute
differences

dissimilarity of the
least similar feature
is relevant

natural distance

General formula for Lp-distance:

Let p,q ∈ IRd :

()∑
=

−=
d

i
ii qpqpd

1

2
2),(∑

=

−=
d

i
ii qpqpd

1
1),(iidi

qpqpd −=
≤≤∞ 1

max),(

pd

i

p
iip qpqpd

1

1
),(

−= ∑

=

14

Norms, Similarity and Kernel Functions

• euklidian distance: length of vector difference
• length of a vector: norm of the vector
• norm: square root of self inner product
• properties of the inner product:

• connection between inner product, norms and metrics:

(inner products imply norms and norms imply metrics)
• inner products are often used as similarity measures.

(in this context they are called kernel functions.)

q

p

q-p: difference vector pq −

i

d

i
i xxxxx ∑

=

⋅==
1

,

zyzxzyx

xyyx

yxccyxyxc

IRFF

,,,

,,

,,,

,:,

+=+

=

=⋅=⋅

→×⋅⋅

()2
1

2
1

,2,,, pqppqqpqpqpq −+=−−=−

15

Supervised Learning
Idea: Learning from example objects to optimise a predictive function.
given:
• target variable C

(classification: Set of nominal values, regression: numerical Values)
• objects: DB∈ F×C: Object o=(o.v,o.c)∈ DB
• training set: T ⊆ DB of which o is fully known.

goal: function f: F → C, mapping object representation to values of the
target variable with minimal error.

error function: quantifies the quality of the model on T.
square loss/ quadratic error:

absolute error:

()∑
∈

−=
To

vofcoTfL 22).(.),(

()∑
∈

==
To

abs vofcoTfL 0:1?).(.),(

16

Training Supervised Methods

• given the type of the function f ,e.g., linear model

• adapt f to training set T by modifying paramter θ
example: f univariate linear function:

training: minimize loss function
• Loss function L describes the error of f for T
• search parameters θ* minimizing L
• approach: build the gradiet of L for θ

and compute the minimum θ*.
=> convex loss functions are beneficial

(the only extremum is the minimum)
=> general loss functions might have multiple local minima and

training can get stuck at suboptimal parameters

xxf ⋅+= 10),(θθθ∑
=

⋅+=
d

i
ii xxf

1
0),(θθθ

x

f(x, θ)

solution 2D case

θ

L(T, θ)

θ*

17

Example: 2D linear regression

given: Trainingsmenge T∈ IR2

model:
loss function:

gradient for θ0:

gradient for θ1:

xxf ⋅+= 10),(θθθ

() ()

()∑

∑∑

∈

∈∈

−−+++=

⋅−+=−=

Tyx

TyxTyx

yxyxxy

xfyxfyxfyTfL

),(
1010

2
0

2
1

2

),(

22

),(

22

222)(

),(2),(),(),(

θθθθθθ

θθθ

()

−−+=+−=

∂
∂ ∑∑∑∑∑

∈∈∈∈∈ TyxTyxTyxTyxTyx
yxxxExyExxyxxL

),(),(
1

),(),(

2
1

),(
0

2
1

1

2

)()(2222 θθθθ
θ

()

+−=+−=

∂
∂ ∑∑∑

∈∈∈ TyxTyxTyx
xyTxyL

),(
1

),(
0

),(
10

0

2

2222 θθθθ
θ

Xfeature space

ta
rg

et

Y

εi{

)()(1
),(

1
),(

0 xEyE
T

xy
TyxTyx θ

θ
θ −=

−
=

∑∑
∈∈

)(
),(

)(

)(

),(),(

2
),(),(

1 xVar
yxCov

xxEx

yxxyE

Tyx Tyx

TyxTyx =
−

−
=
∑ ∑

∑∑

∈ ∈

∈∈θ

:0
0

2

=
∂
∂
θ
L

:0
1

2

=
∂
∂
θ
L

18

Further Comments on Supervised Learning

• regularization: Often parameters θ can grow unrestricted allowing
overfitting.
=> integrate regularization term to restrict the allowed solutions
example: linear ridge regression

• often optimization are more complicated by considering constraints
(quadratic programs, semi definite programs, …)

• loss functions do not have to be convex (neural networks)
=> optimization minimizes the loss until local convergence

• there are other approaches to supervised learning not minimizing a
loss function, e.g., maximize the likelihood,

() 2
2

1
0

2 ..1),(θαθθα ⋅+

⋅+−⋅−= ∑ ∑

∈ =To

d

i
ii vocoTfL

regularization

19

Instance-based Learning

idea: search the most similar objects in training set T and a
use their target variables to estimate the target value.

two components:

• decision set of similar training objects:
• depends on similarity/distance measure (k-nearest neighbors in T)
• size of decision set k describes the generalization of the method

• compute the predicton
• use majority vote (classification)/ mean (regression)
• distance weighted votes (e.g., quadratic inverse weighting:

1/d(q,x)2)

20

Bayesian Learning

idea: each observation is generated by a hidden statistical
distribution/process.

Given a set of these distributions allows to determine the most likely
explanation for any new observation.

example: Bot-Detection
given: model A: humanplayer, model B: Bot player

observation v (vector describing network traffic)
assumption: v follows either A or B.
task: compute the likelihood that v was generated by B.
solution: compute P(B|v) = likelihood of B given that v was already
observed

caution: do not confuse with P(v|B) = likelihood that B generates vector v
It might be very unlikely that B exactly generates v.

21

Rule of Bayes

How to compute the likelihood of B generating the given observation v.

• we assume p(v) =p(A)⋅p(v|A)+p(B)⋅p(v|B),
here: P(B), P(A) are called prior probabilities describing the general
ratio of instances from B and A. (How much Bots are out there?)

=> the above formula implies that even if p(v|A) < p(v|B) it might be more
likely that v is caused by a bot because bots might be very rare.

Generally:

• rule of Bayes:

• for all distributions C and observation v it holds:

(the observation has to follow a known model)
• therefore, is the most likely distribution

(class/value)

)(
)|()()|(

vP
BvPBPvBP ⋅

=

∑
∈

=
Cc

vcP 1)|(

())|(maxarg* vcPc
Cc∈

=

22

Training Bayes Classifiers
• prior distribution P(c) are approximated as the ration of class

members in the training set T
(17 out of 100 traffic snippets were generated by bots: P(B) =17%)

• to compute p(v|c) we assume a certain type of distribution
• in the most simple case training is done be computing relative

probabilties in T.

example: consider two dices
• possible results: {1, 2, 3, 4, 5, 6}
• dice D1 is uniform distributed: 1/6 for all number from 1 to 6
• distribution for dice D2 : 1: 1/12, 2: 1/12, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/3
• p(v=1|D1) = 1/6, p(v=6|D2)=1/3
• given: P(D1)= 0.2 und P(D2)=0.8:

9
8

3,08,061,02,0
3,08,0)6|(;8.0

61,08,061,02,0
61,08,0)5|2(=

⋅+⋅
⋅

==
⋅+⋅

⋅
= DPDP

23

Univariate Distributions

• discrete probability spaces:
• finite number of events
• separate estimation for all basic events

• real valued distributions:
• infinite number of events

(each event has a probability 1/∞->0)
• estimation of using density functions

(e.g. normal distributions)
• training = estimate parameters of the density

function (e.g., mean and variance)
• to compute probabilities from density functions

either integrate over an interval of events or
apply the rule of Bayes to determine relative
densities.

1
2

3
4

5
R1

0

5

10

15

20

25

30

24

Statistic Models

considering multiple features vi requires joint estimates of
p(v1, …,vd|c) .
problem: How to consider correlations betweent v1, …, vd ?
• naive approach: consider all objects as independent => naive Bayes

pro: easy estimation and computation

con: limited expressiveness

• complete dependency: estimate joint probabilities for all value
combinations (v1, …,vd)
pro: any correlation might be considered
con: number of possible events increases exponential in d
=> usually not enough training data
=> large models and slow training

• advances solutions allow to consider some correlations but not all
(e.g., Bayes networks, graphical models,etc.)

∏
=

=
d

i
id cvPcvvP

1
1)|()|...,,(

25

Evaluating Supervised Learners

• optimization on the training data not inclusive

⇒ generalization: how good does the method work on
unknown data

• it is necessary to test classifiers and predictors on
previously unknown and independent samples
(Train and Test)

• problem: Usually, there is not enough labeled data
providing a correct target value.
=> ground truth is rare
=> manual labeling is cumbersome and expensive

26

Testing Supervised Predictors

goal:
• apply train and test set to as many instances as possible
• avoid overfitting (train and test set are disjunctive)

• Leave-One-Out:
• perform n tests for n data objects
• each element is picked once for testing and the rest is used for

training
• results are reproducible
•maximum test effort (requires to train n predictors)
• only applicable to small data sets or instance-based methods

27

Stratified k-fold Cross Validation

• similar to leave-one-out. Build k folds and perform leave-one-out on
folds instead of instances

• stratification: the class distribution in each fold is the same as in the
complete data set. (each class is approx. represented by the same
number of objects in each fold)

• the number of folds k controls the effort (the larger the more effort)

• result of k-fold cross validation depends on the sampling of the folds
=> results can vary when shuffling the data
=> k-fold cross validation might be applied several times on different
shufflings to avoid this effect

28

1 fold:
1 a2 b

3 c
test set

classifier

train set

classification
results

1 a2 3 b c
set of all labeled data objects

2 fold:
1 a3 c

2 b
test set

classifier

train set

classification
results

3 fold:
2 b3 c

1 a
test set

classifier

train set

classification
results

green boxes: class 1 (folds:1, 2, 3)
blue boxes: class 2 (folds: a, b, c)

joint
classification

result

Example: Stratified 3-fold Cross Validation

29

Evaluating Classification Results

raw test result: confusion matrix

class 1 class 2 class 3 classe 4 class 5

class 1

class 2

class 3

class 4

class 5

35 1 1

0

3

1

3

31

1

1

50

10

1 9

1 4

1

1

5

2

210

15 13

classified as ...

re
al

 c
la

ss
la

be
l

Based on the confusion matrix the following measures are derived:
classification accuracy, classification error, precision, recall, F1-measure

correct
classifier
objects

30

Classification Metrics
• let f be a classifier, TR be the training set, TE be the test set

• o.c is the real class of object o

• f(o) is the predicted class of o

• classification accuracy of f onTE:

• true classification error of f on TE:

• apparent classification error on TR (used to determine overfitting)

||
|}.)(|{|)(

TE
coofTEofGTE

=∈
=

||
|}.)(|{|)(

TE
coofTEofFTE

≠∈
=

||
|}.)(|{|)(

TR
coofTRofFTR

≠∈
=

31

Classification Metrics

• Recall:
ratio of correctly classified instances of
class i. Let Ci= {o∈ TE | o.c = i}, then

),(Recall),(Precision
),(Recall),(Precision2),(F1

ifif
ififif

TETE

TETE
TE +

⋅⋅
=

||
|}.)(|{|),(

i

i
TE C

coofCoifRecall =∈
=

• Precision:
ratio of objects being correctly assigned to
class i. Let Ki= {o∈ TE | f(o) = i}, then

Ci

Ki

assigned class f(o)

re
al

 c
la

ss
 o

.c

1 2
1
2

• F1 score:
harmonic mean of precision and recall.

||
|}.)(|{|),(

i

i
TE K

coofKoifPrecision =∈
=

32

Unsupervised Learning

problem setting: only unlabeled objects/no classes or target values
tasks:
• find groups of similar objects. (Clustering)
• find uncommon objects. (Outlier Detection)
• find parts of objects which occure often (Pattern Mining)
pro:
• results are based on less assumptions
• no labeling required
con:
• measuring the results if often a problem (manual evaluation)
• more flexibility often implies more computational complexity
• correlating the result to the actual target is difficult without examples

(how to guide the algorithm to achieve the goal of the process)

33

Example Applications

• Clustering: Determine typical tactics for a particular boss
encounter.

• Outlier Detection: Which player might cheat?

• Pattern Mining: Determine standard rotations of abilitiy
usage.

34

Clustering Methods

• identify a finite set of clusters or groups

• similar objects should be part of the same cluster whereas
dissimilar objects should be part of different clusters

• clustering comprises finding the clusters and assigning
new objects to these clusters

35

Clustering (formal view)
given:

• dataset DB ⊆ F (F is a feature space)
• C ⊆ IN0 a discrete target variable (cluster id)
• sometimes the number of clusters |C| is assumed to be known

goal: find function f: F → C assigning ojbects to clusters.
find reasonable clusters(e.g. Minimize intra cluster distance and
maximize distance between clusters)

quality of a clustering:
• depends on the cluster model:

• How is an object assigned to a cluster?

• How is decided whether two objects belong to the same custer?

• optimize:
• compactness of clusters

• cluster separation

36

Partitioning Clustering(1)

idea:
• there a k clusters and each cluster c is represented by oc

• object o is assigned to c by the distance dist(oc,o):

• to achieve compact clusters minimize:
• average distance of objects to the closest clusters:

• mean squared distance to the closest cluster:

• Quality of the comlet clustering :

()),(minarg)(oodistocluster c
Cc∈

=

{ }
∑

=∈∈

=
coclusterDBoo

c oodistccompact
)(|

),()(

{ }

2

)(|
),()(∑

=∈∈

=
coclusterDBoo

c oodistcsqrComp

∑
∈

=
Cc

ccompactCTD)()(

∑
∈

=
Cc

csqrCompCTD)()(2

37

Partitionierendes Clustering (2)

• typical cluster representations:
• centroid:

• medoid:

minimize TD or TD2:
• TD and TD2 are not konvex and might have multiple local minima
• TD and TD2 are discontinuous (e.g. when switching clusters)
• apply greedy search to minimize TD/ TD2

1. Step: for all o ∈ DB cluster(o) is known
=> compute cluster representations {oc1, …, ocn }

2. Step: given the cluster representation {oc1, …, ocn }
=> assign all objects to their closest clusters and go to step 1

3. terminate if TD/ TD2 do not change (no cluster switch => local
minimum)

{ } { }
∑

=∈∈=∈
=

coclusterDBoo
o

coclusterDBo
ccentroid

)(|)(|
1)(

{ } { }

= ∑

=∈∈=∈∈ coclusterDBppcoclusterDBoo
podistcmedoid

)(|)(|
),(minarg)(

38

Example: Partitioning Clustering

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

compute centroids

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

assign data objects

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

compute centroids

39

Algorithm
ClusteringVarianceMinimization(Objectset DB, Integer k)

build initial clustering by splitting DB into k Cluster;
Compute representatives C’={C1, ..., Ck}
C = {};
TD2 = sqrTD(C’,DB);
repeat

TD2old = TD2;
C = C’;
build k clusters by assigning each object to the next
centroid in C;

compute the new representatives C’={C’1, ..., C’k};
TD2 = sqrTD(C’,DB);

until TD2 == TD2old;
return C;

40

Partitioning Clustering

variants:
• k-Means: update a single object and then recompute affected

centroids.
• Expectation Maximation Clustering (EM)

cluster=density distribution, Bayesian model, soft-clustering
• k-Medoid Clusterings:

• cluster representations are mediods
• cluster adaption is done by switiching objects and medoids

properties:
• all algorithms depend on the initialization

• centroid-based are very efficient O(i ⋅ n ⋅ k). (#Iterations i)
• medoid-based are generic but slow O(i ⋅ n2 ⋅ k) (#Iterationen i)

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Training Supervised Methods
	Example: 2D linear regression
	Further Comments on Supervised Learning
	Instance-based Learning
	Bayesian Learning
	Rule of Bayes
	Training Bayes Classifiers
	Univariate Distributions
	Statistic Models
	Evaluating Supervised Learners
	Testing Supervised Predictors
	Stratified k-fold Cross Validation
	Foliennummer 28
	Evaluating Classification Results
	Classification Metrics
	Classification Metrics
	Unsupervised Learning
	Example Applications
	Clustering Methods
	Clustering (formal view)
	Partitioning Clustering(1)
	Partitionierendes Clustering (2)
	Example: Partitioning Clustering
	Algorithm
	Partitioning Clustering
	Dichtebasiertes Clustering
	Dichtebasiertes Clustering
	Dichtebasiertes Clustering
	Dichtebasiertes Clustering
	Dichtebasiertes Clustering
	Dichtebasiertes Clustering
	Dichtebasiertes Clustering
	Dichtebasiertes Clustering
	Dichtebasiertes Clustering
	Dichtebasiertes Clustering
	Dichtebasiertes Clustering
	Diskussion dichtebasiertes Clustering
	Outlier Detection
	Beispiel: Distanzbasierte Outlier
	Frequent Pattern Mining
	Varianten des Frequent Pattern Minings
	Grundlagen Frequent Itemsets (1)
	Grundlagen Frequent Itemsets
	Problemstellung: Frequent Itemset Mining
	Itemset Mining
	A priori Algorithmus
	Kandidatengenerierung im Apriori Algorithmus (1)
	Kandidatengenerierung im Apriori Algorithmus (2)
	Beispiel für den Apriori Algorithmus
	Frequent Itemset Mining
	Lernziele
	Literatur

