
1

Lecture Notes for
Managing and Mining Multiplayer Online Games

for the Summer Semester 2017

Skript © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Ludwig Maximilians Universität München
Institut für Informatik
Lehr- und Forschungseinheit für Datenbanksysteme

Chapter 2: The Game Core

2

Chapter Overview

• Modelling the state of a game (Game State)
• Modelling time (turn- and tick-system)
• Handling actions
• Interaction with other game components
• Spatial management and distributing the game state

3

Internal Representation of games

Good Design: strict separation of data and display
(Model-View-Controller Pattern)

• MMO-Server: Managing the game state / no visualization
necessary

• MMO-Client: Parts of the game state / but need for I/O and
visualization. Supports the implementation of different clients for
the same game (different quality of graphics)

Benutzersicht Game State

ID Type PosX PosY Health …

412 Knight 1023 2142 98 …

232 Soldier 1139 2035 20 …

245 Cleric 1200 2100 40 …

…

4

Game State

All data representing the current state of the game
• object, attribute, relationship, …

(compare ER or UML models)
• models all alterable information
• lists all game entities
• contains all attributes of game entities
• information concerning the whole game

not necessarily in the Game State:
• static information
• environmental models/maps
• preset attributes of game entities

5

Game Entities

Game entities = objects in the game
examples for game entities:
• units in a RTS-Game
• squares or figures in a board game
• characters in a RPG
• items
• environmental objects (chests, doors, ...)

6

Attributes and Relationships

Properties of a game entity that are relevant for the rules
equal attributes and relationships.
Examples:
• current HP (max. HP only if variable)
• level of a unit in a RTSG
• enviromental objects: open or closed doors
• relationships:

• character A has item X in her inventory (1:n)
• A and B are part of the same team (n:m)
• A is fighting C (n:m)
• A has weapon W in his right hand (1:1)

7

Information concerning the whole game

• every piece of information about the game that are not
accessable via entities

• ingame time of the day (morning, noon, etc.)
• the map for the current game
• player field of view in an RTS

(in case there is no abstract entity for a player)
• server type of an MMORPG (PVP/PVE/RP)
• …

Important:
Information can be modelled as game state attributes or
separate entities.

8

Example: Chess

• game information:
• players and assigned colors (black or white)
• game mode: with chess clock or without

• game state:
• positions of all figures / occupation of fields

(entities encompass either figures or fields)
• player who is next
• time left for both players (dependant on game mode)

9

Actions

• actions transfer a valid game state into a new game state
• actions implement the system rules
• game Core organizes their Creation via:

• player (user input)
• control of NPCs (AI-control)
• environmental model

Example:

• a ball is placed on a slope
• environmental model decides that the ball

will roll assisted by the physics engine
• action, that changes position and state of

the ball (acceleration), is triggered

10

Example: Chess

• actions change figure positions/allocation of fields
• knight from G1 to F3
• pawn from D7 to D5

• actions enforce the game rules:
• black pawn is allowed 2 squares ahead if it has not been moved yet
• knight is allowed 2 squares ahead and one to the left (among other)

A B C D E F G H

8
7
6
5
4
3
2
1

A B C D E F G H

8
7
6
5
4
3
2
1

A B C D E F G H

8
7
6
5
4
3
2
1

11

Actions and Time

• controls the point in time an action is performed
• game time (processed actions/time unit)

to realtime (wall-clock time) ratio
• synchronization with other game components:

• rendering (graphics/sound)
• handling user input
• AI calls for NPCs
• …

• handling actions which cannot be processed yet:
• deleting (two moves in a row by a one player in chess)
• delaying (processing an action as soon as it is valid)

=> solutions strongly depend on the game principle

12

Time Models for Action Processing

Turn-based Games: Action type and sequence are
predetermined and are managed by the game core

• game core calls action creators in a fixed order
• realized by loops, state machine, ...
• no concurrency possible
• examples:

• Chess
• Civilization
• Settlers of Catan
• Turn-based RPGs

Disadvantages:
• player attendance is needed
• game principle may allow for simultaneous player

actions (reduced waiting time)

13

Time Models for Action Processing

Real-time/transaction system
• the game does not control action creation times
• players are able to take asynchronous actions
• NPC/environmental model can act in independent

threads
• concurrency can be implemented similar to transaction

systems (block, reset, …)

• examples:
• certain browser games

14

Time Models for Action Processing

advantages:
• can be based on standard solutions (e.g. DBS)
• allows concurrency:

• reduces waiting time for other players
(game might demand waits)

• system distribution is straight forward

disadvantages:
• no synchronization between game and real time

=> game time (actions per minute) might stall
• no control of max. amount of actions per time unit
• Simultaneous actions are impossible (serialisation)

15

Time Models for Action Processing

Tick-Systems (Soft-Real-Time Simulation)
• actions are only processed at fixed ticks.
• actions can be created at any moment.
• one tick has a minimum length (e.g. 1/24 s).

=> real time and game time are strongly synchronized

• all actions in one tick count as concurrent.
(no serialization)

• the next game state is created by a cumulated view of all actions.
(no isolation)

• model used in rendering because it requires fixes framerates and
concurrent changes.

16

Time Models for Action Processing

Advantages:
• synchronizes game-time and real-time
• fair rules for actions per time-unit
• concurrency

Disadvantages:
• handling lags

(Server does not finish computing a tick in time)
• Conflict resolution for concurrent and contradictory actions
• chronological order

(all actions generated within one tick are considered concurrent)

17

Time Models for Action Processing

other important aspects of the tick-system:
• several factors influence computing time required

for one tick:
• hardware
• game state size
• number of actions
• complexity of actions
• synchronization and handling subsystem tasks

for example:
distribution of game state to the persistence layer

18

Actions vs.Transactions

moves/actions are very similar to DBS transactions
• atomicity: move/action will be executed as a whole or not carried out

example: Player A makes a move, Chess clock for player A stops,
Chess clock for player B resumes

• consistency: a valid game state is transferred to another valid game
state

• permanence: the game state has fixed transaction results and they
are (at least partially) handed to the persistence layer.

Furthermore:
Transitions have to be consistent to rules of the game.
(maintaining integrity)

• static: game state is rule-consistent
• dynamic: transition is rule-consistent

19

Actions vs. Transactions

temporal aspects of action processing are important
• action handling should be as fair as possible

• A player's actions should not be delayed
• Every player has the same amount of possible actions per time unit

• concurrent actions should be theoretically possible
(Simulating reality)

• a limit to processing time is necessary for smooth game
play

• possible elimination of actions for exceeding the time limit
• synchronizing game time and real time should be possible

20

Actions vs.Transactions

no obligatory single user operation (Isolation)
• concurrent actions must be computed interdependently

(not serializable)
• example:

• Character A has 100/100 HP (=Hit Points)
• At tj, A suffers 100 HP damage from character B’s attack
• Simultaneously at tj, A is being healed for 100 HP by character C

Outcome under isolation:
• healing first (overheal) followed by damage

=> A has 0 HP left and dies
• 100 HP damage first => A dies and can no longer be healed

Result of concurrent actions:
• A suffers 100 HP damage and receives healing for 100 HP : the effects

cancel each other

21

The Game Loop

• actions are applied to the game state in this continuous
loop to ensure consistent transitions. (Action handling)

• time model starts each iteration.
• other functions, that are dependant on the game loop

• handling user input(=> P layer actions)
• calls to NPC AI (=> NPC-actions)
• calls to the environmental model
• graphics and sound rendering
• saving certain game aspects to secondary storage
• transmitting data to the network
• update supporting data structures

(spatial index structures, graphics-buffer, …)
• …

create actions

22

Implementing a game loop

• one game loop for all tasks:
• no overhead due to synchronization => efficient
• poor layering of the architecture: a change in one aspects

requires a change in the game core

• different game loops for each subsystem
(e.g.: AI-loop, network loop, rendering loop, …)
• well layered architecture
• subsystems can be turned off in a server-client architecture

• client needs no dedicated NPC-control
• server has no need of a rendering-loop

• game loops must be synchronized

23

Communicating with the game loop

• game loop calls other modules
• Solution for systems that are in sync with or slower than the

game loop
• Ill-suited for multithreading
examples: persistence layer, network, sound rendering, …

• game loop messages subsystems
• allows multithreading
• call frequency is a multiple of game loop pace
• examples: NPC-control, client synchronization,

sound rendering, …

• synchronization via read only access to the game state
• in fast paced systems, the sub-system needs its own loop
• multithreading with comprehensive access to the game state
• read date must be consistent (not yet changed)

e.g. graphics rendering, persistence-layer, …

24

Handling actions

• action handling: turns game actions (run, shoot,
jump, …) into changes to the game state

• game mechanics are implemented via action-handling
• valid actions follow calculation rules
• read operations on the game state
• write operations on the game state
• use of subsystems possible

e.g. spatial management module or physics engine

25

Consistency during action handling

• tick-system: concurrent actions are possible
• sctions within a tick are independent of sequence
• problem: Reading already changed data
• solution:

• shadow memory:
• there are two game states G1 and G2
• G1 holds the last consistent game state (active)
• G2 is changed during current iteration (inactive)
• on completion of the tick, G1 will be set to inactive and G2 will

be set to active

• fixed sequence of read and write operations for actions
• break down and rearrange the necessary action components
• all actions are being handled simultaneously

26

Conflicts during Concurrency

• Concurrency causes conflicts (e.g. simultaneously
picking up a gold coin)

• problem: result of an action cannot be calculated in
isolation (If A gets the coin, B cannot get the coin)

• conflict resolution:
• deleting both actions (Undo both)

=> conflict detection and possible reset of data
• random pick of an action and deleting the other (random)

=> conflict detection and possible reset of data
• first action is executed (natural order)

=> this solution is not necessary fair
(order of operations ≠ order of actions)
=> but: division into ticks can already influence order of actions

27

Implementing Actions

How to implement actions?
• direct implementation using the programming language

• advantage: high efficiency
• disavantages:

• redudant code for the same mechanics
• Inconsistencies are possible

• Encapsulate parts of action processing in modules ans
subsystems :
• Physics Engine (collision testing, acceleration, objects bouncing, …)
• Spatial Management Module (nearest neighbors, field of view, …)
• AI Engine (routing, swarm movement, …)

28

Implementing actions

• Scripting Engine
• offers a standardized implementation interface
• encapsulates access to the game state (better consistency)
• entities and their behavior are programed on the same basis
• advantages: some designs require changing the scripting engine
• example: LUA

(http://http://lua-users.org/wiki/ClassesAndMethodsExample)

require("INC_Class.lua")
--=========================
cAnimal=setclass("Animal")

function cAnimal.
methods:init(action, cutename)
self.superaction = action
self.supercutename = cutename

end

--==========================
cTiger=setclass("Tiger", cAnimal)

function cTiger.methods:init(cutename)
self:init

super("HUNT (Tiger)", "Zoo Animal (Tiger)")
self.action = "ROAR FOR ME!!"
self.cutename = cutename

end

29

Physics Engines

• implements solid state physics and classical mechanics
• game entity must provide all necessary parameter

• spatial extension (polygon mesh, simplificatios: cylinders, MBRs)
• movement vectors
• mass
• …

• uses differential equations
• realistic effects require large tick rates and detailed models
• large computational effort:

• precomputation
• numerical approximations

30

Physics Engines und MMO-Server

• majority of the results from a classical physics engine are only
required for a realistic display

e.g. particle filters, rag-doll animations,..
• joint computation of game state and graphic display often makes

sense because they are based on the same effectHohe Tick-Raten
• use on the client side because display is available anyway
• on sever side mechanics too detailed to be computed for all game

entities
• simplifications on the server side are often sufficient to implement

game design
• use physics engines to determine parameters and approximations

on the server side

31

Spatial Management in Game Servern

• majority of games takes place in a spatial environment
(2D/3D maps, …)

• action processing, NPC control and network layer
requires spatial query processing:
• Which other game entities are within interaction range?

(AoI = Area of Interest)
• supports collision detection (cmp. Physics Engine) and area

intersections (prefiltering)
• Which other game entity is closest?
• Does a player enter the aggro range of a NPC?

Hit-
Box/Range

Attack-
Range

32

Spatial Queries (1)
Spatial queries (here w.r.t to euclidian distance IR2)
• Range-Query

• Box-Query

ε

x

y

33

Spatial Queries (2)
• Intersection Query

• NN-Query

(q,r)

q

v

34

Spatial Management for Game Servers

• for small game worlds with limited game entities
=> organize spatial position in a list

• process queries by sequential scans
• with high query frequencies and large numbers of

moving objects query processing becomes expensive
example: 1000 game entities in one zone, 24 ticks/s

=> naive AoI computation requires 24.000.000
distance computations per second

• conclusion: the cost for spatial query processing
strongly increases with the size of the game state

35

Efficiency Tuning for Spatial Queries

• methods to reduce the number of considered objects
(pruning)
• distribute the game world (zoning, instancing, sharding, …)
• index structures (BSP-Tree, KD-Tree, R-Tree, Ball-Tree)

• reduce the number of spatial queries
• reduce query ticks
• spatial publish subscribe

• efficient query processing
• nearest-neighbor queries
• ε-range Join (simulaneously compute all AoIs)

	Lecture Notes for�Managing and Mining Multiplayer Online Games�for the Summer Semester 2017
	Chapter Overview
	Internal Representation of games
	Game State
	Game Entities
	Attributes and Relationships
	Information concerning the whole game
	Example: Chess
	Actions
	Example: Chess
	Actions and Time
	Time Models for Action Processing
	Time Models for Action Processing
	Time Models for Action Processing
	Time Models for Action Processing
	Time Models for Action Processing
	Time Models for Action Processing
	Actions vs.Transactions
	Actions vs. Transactions
	Actions vs.Transactions

	The Game Loop
	Implementing a game loop
	Communicating with the game loop
	Handling actions
	Consistency during action handling	
	Conflicts during Concurrency
	Implementing Actions
	Implementing actions
	Physics Engines
	Physics Engines und MMO-Server
	Spatial Management in Game Servern
	Spatial Queries (1)
	Spatial Queries (2)
	Spatial Management for Game Servers
	 Efficiency Tuning for Spatial Queries
	Sharding und Instanziierung
	Zoning
	Micro-Zoning
	Spatial Publish-Subscribe
	Micro Zoning und Spatial Publish-Subscribe
	Klassische Indexstrukturen
	Wichtige Merkmale von räumlichen Suchbäumen
	Anforderungen an MMO Server
	Binary Space Partitioning Trees (BSP-Tree)
	Binary Space Partitioning Trees (BSP-Tree)
	Quad-Tree
	Datenpartitionierende Index-Strukturen
	R-Baum
	Einfügen in den R-Baum
	Split-Algorithmus im R-Baum
	schnellere Splitstrategie für R-Baum (1)
	Splitalgorithmus im R*-Baum
	Splitalgorithmus im R*-Baum
	Bulk-Loads im R-Baum
	Sort-Tile Recursive
	Löschen im R-Baum
	Suchalgorithmen auf Bäumen
	Nächste-Nachbar-Anfragen
	Spatial Joins
	R-tree Spatial Join (RSJ)
	Probleme durch Datenvolatilität
	Throw-Away Indices
	Game Design
	Lernziele
	Literatur und Material

