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Chapter Overview

• Modelling the state of a game (Game State)
• Modelling time (turn- and tick-system)
• Handling actions
• Interaction with other game components
• Spatial management and distributing the game state
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Internal Representation of games

Good Design: strict separation of data and display
(Model-View-Controller Pattern)

• MMO-Server: Managing the game state / no visualization 
necessary

• MMO-Client:  Parts of the game state / but need for I/O and 
visualization. Supports the implementation of different clients for 
the same game (different quality of graphics)

Benutzersicht Game State

ID Type PosX PosY Health …

412 Knight 1023 2142 98 …

232 Soldier 1139 2035 20 …

245 Cleric 1200 2100 40 …

…



4

Game State 

All data representing the current state of the game
• object, attribute, relationship, …

( compare ER or UML models )
• models all alterable information
• lists all game entities
• contains all attributes of game entities
• information concerning the whole game

not necessarily in the Game State:
• static information
• environmental models/maps
• preset attributes of game entities
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Game Entities

Game entities = objects in the game
examples for game entities:
• units in a RTS-Game
• squares or figures in a board game
• characters in a RPG
• items
• environmental objects (chests, doors, ...)
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Attributes and Relationships

Properties of a game entity that are relevant for the rules
equal attributes and relationships.
Examples:
• current HP (max. HP only if variable)
• level of a unit in a RTSG
• enviromental objects: open or closed doors
• relationships:

• character A has item X in her inventory (1:n)
• A and B are part of the same team (n:m)
• A is fighting C (n:m)
• A has weapon W in his right hand (1:1)
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Information concerning the whole game

• every piece of information about the game that are not 
accessable via entities

• ingame time of  the day (morning, noon, etc.)
• the map for the current game
• player field of view in an RTS

(in case there is no abstract entity for a player)
• server type of an MMORPG (PVP/PVE/RP)
• …

Important:
Information can be modelled as game state attributes or 
separate entities.
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Example: Chess

• game information:
• players and assigned colors (black or white)
• game mode: with chess clock or without

• game state:
• positions of all figures / occupation of fields

(entities encompass either figures or fields)
• player who is next
• time left for both players (dependant on game mode)
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Actions

• actions transfer a valid game state into a new game state 
• actions implement the system rules
• game Core organizes their Creation via:

• player (user input)
• control of NPCs  (AI-control)
• environmental model

Example:

• a ball is placed on a slope
• environmental model decides that the ball

will roll assisted by the physics engine
• action, that changes position and state of

the ball (acceleration), is triggered
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Example: Chess

• actions change figure positions/allocation of fields
• knight from G1 to F3
• pawn from D7 to D5

• actions enforce the game rules:
• black pawn is allowed 2 squares ahead if it has not been moved yet
• knight is allowed 2 squares ahead and one to the left (among other)
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Actions and Time

• controls the point in time an action is performed
• game time (processed actions/time unit)

to realtime (wall-clock time) ratio
• synchronization with other game components:

• rendering  (graphics/sound)
• handling user input
• AI calls for NPCs
• …

• handling actions which cannot be processed yet:
• deleting (two moves in a row by a one player in chess)
• delaying (processing an action as soon as it is valid)

=> solutions strongly depend on the game principle
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Time Models for Action Processing

Turn-based Games: Action type and sequence are 
predetermined and are managed by the game core

• game core calls action creators in a fixed order
• realized by loops, state machine, ...
• no concurrency possible
• examples:

• Chess
• Civilization
• Settlers of Catan
• Turn-based RPGs

Disadvantages: 
• player attendance is needed
• game principle may allow for simultaneous player 

actions (reduced waiting time)



13

Time Models for Action Processing

Real-time/transaction system
• the game does not control action creation times
• players are able to take asynchronous actions
• NPC/environmental model can act in independent 

threads
• concurrency can be implemented similar to transaction 

systems (block, reset, …)

• examples:
• certain browser games
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Time Models for Action Processing

advantages:
• can be based on standard solutions (e.g. DBS)
• allows concurrency: 

• reduces waiting time for other players
(game might demand waits)

• system distribution is straight forward

disadvantages:
• no synchronization between game and real time

=> game time (actions per minute) might stall
• no control of max. amount of actions per time unit
• Simultaneous actions are impossible (serialisation) 
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Time Models for Action Processing

Tick-Systems (Soft-Real-Time Simulation)
• actions are only processed at fixed ticks.
• actions can be created at any moment.
• one tick has a minimum length (e.g. 1/24 s). 

=> real time and game time are strongly synchronized

• all actions in one tick count as concurrent.
(no serialization)

• the next game state is created by a cumulated view of all actions.
(no isolation)

• model used in rendering because  it requires fixes framerates and 
concurrent changes.
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Time Models for Action Processing

Advantages:
• synchronizes game-time and real-time
• fair rules for actions per time-unit
• concurrency

Disadvantages:
• handling lags

(Server does not finish computing a tick in time)
• Conflict resolution for concurrent and contradictory actions
• chronological order

(all actions generated within one tick are considered concurrent)
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Time Models for Action Processing

other important aspects of the tick-system:
• several factors influence computing time required

for one tick:
• hardware
• game state size
• number of actions
• complexity of actions
• synchronization and handling subsystem tasks

for example:
distribution of game state to the persistence layer
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Actions vs.Transactions

moves/actions are very similar to DBS transactions
• atomicity: move/action will be executed as a whole or not carried out

example: Player A makes a move, Chess clock for player A stops, 
Chess clock for player B resumes

• consistency: a valid game state is transferred to another valid game 
state

• permanence: the game state has fixed transaction results and they 
are (at least partially) handed to the persistence layer.

Furthermore:
Transitions have to be consistent to rules of the game.
(maintaining integrity)

• static: game state is rule-consistent
• dynamic: transition is rule-consistent
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Actions vs. Transactions

temporal aspects of action processing are important
• action handling should be as fair as possible

• A player's actions should not be delayed
• Every player has the same amount of possible actions per time unit

• concurrent actions should be theoretically possible 
(Simulating reality)

• a limit to processing time is necessary for smooth game 
play

• possible elimination of actions for exceeding the time limit
• synchronizing game time and real time should be possible
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Actions vs.Transactions

no obligatory single user operation (Isolation)
• concurrent actions must be computed interdependently 

(not serializable)
• example:

• Character A has 100/100 HP (=Hit Points) 
• At tj, A suffers 100 HP damage from character B’s attack
• Simultaneously at tj, A is being healed for 100 HP by character C

Outcome under isolation: 
• healing first (overheal) followed by damage

=> A has 0 HP left and dies
• 100 HP damage first => A dies and can no longer be healed

Result of concurrent actions:
• A suffers 100 HP damage and receives healing for 100 HP : the effects 

cancel each other 
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The Game Loop

• actions are applied to the game state in this continuous 
loop to ensure consistent transitions. (Action handling)

• time model starts each iteration.
• other functions, that are dependant on the game loop

• handling user input(=> P layer actions)
• calls to NPC AI (=> NPC-actions)
• calls to the environmental model
• graphics and sound rendering
• saving certain game aspects to secondary storage
• transmitting data to the network
• update supporting data structures

(spatial index structures, graphics-buffer, …)
• …

create actions
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Implementing a game loop

• one game loop for all tasks:
• no overhead due to synchronization => efficient
• poor layering of the architecture: a change in one aspects 

requires a change in the game core

• different game loops for each subsystem
(e.g.: AI-loop, network loop, rendering loop, …)
• well layered architecture
• subsystems can be turned off in a server-client architecture

• client needs no dedicated NPC-control
• server has no need of a rendering-loop

• game loops must be synchronized



23

Communicating with the game loop

• game loop calls other modules
• Solution for systems that are in sync with or slower than the 

game loop
• Ill-suited for multithreading
examples: persistence layer, network, sound rendering, …

• game loop messages subsystems
• allows multithreading
• call frequency is a multiple of game loop pace
• examples: NPC-control, client synchronization,

sound rendering, …

• synchronization via read only access to the game state
• in fast paced systems, the sub-system needs its own loop
• multithreading with comprehensive access to the game state
• read date must be consistent (not yet changed)

e.g. graphics rendering, persistence-layer, …
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Handling actions

• action handling: turns game actions (run, shoot,
jump, …) into changes to the game state

• game mechanics are implemented via action-handling 
• valid actions follow calculation rules
• read operations on the game state
• write operations on the game state
• use of subsystems possible

e.g. spatial management module or physics engine
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Consistency during action handling

• tick-system: concurrent actions are possible
• sctions within a tick are independent of sequence
• problem: Reading already changed data
• solution: 

• shadow memory: 
• there are two game states G1 and G2
• G1 holds the last consistent game state (active)
• G2 is changed during current iteration (inactive)
• on completion of the tick, G1 will be set to inactive and G2 will 

be set to active

• fixed sequence of read and write operations for actions
• break down and rearrange the necessary action components
• all actions are being handled simultaneously
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Conflicts during Concurrency

• Concurrency causes conflicts (e.g. simultaneously 
picking up a gold coin)

• problem: result of an action cannot be calculated in 
isolation (If A gets the coin, B cannot get the coin)

• conflict resolution:
• deleting both actions (Undo both)

=> conflict detection and possible reset of data
• random pick of an action and deleting the other (random)

=> conflict detection and possible reset of data
• first action is executed (natural order)

=> this solution is not necessary fair 
(order of operations ≠ order of actions)
=> but: division into ticks can already influence order of actions
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Implementing Actions

How to implement actions?
• direct implementation using the programming language

• advantage: high efficiency
• disavantages: 

• redudant code for the same mechanics
• Inconsistencies are possible

• Encapsulate parts of action processing in modules ans 
subsystems :
• Physics Engine (collision testing, acceleration, objects bouncing, …)
• Spatial Management Module (nearest neighbors, field of view, …)
• AI Engine (routing, swarm movement, …)
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Implementing actions

• Scripting Engine
• offers a standardized implementation interface
• encapsulates access to the game state (better consistency)
• entities and their behavior are programed on the same basis
• advantages: some designs require changing the scripting engine
• example: LUA

(http://http://lua-users.org/wiki/ClassesAndMethodsExample)

require("INC_Class.lua")
--=========================
cAnimal=setclass("Animal")

function cAnimal.
methods:init(action, cutename)
self.superaction = action
self.supercutename = cutename 

end 

--========================== 
cTiger=setclass("Tiger", cAnimal) 

function cTiger.methods:init(cutename)
self:init

super("HUNT (Tiger)", "Zoo Animal (Tiger)")
self.action = "ROAR FOR ME!!" 
self.cutename = cutename

end
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Physics Engines

• implements solid state physics and classical mechanics
• game entity must provide all necessary parameter

• spatial extension (polygon mesh, simplificatios: cylinders, MBRs)
• movement vectors
• mass
• …

• uses differential equations
• realistic effects require large tick rates and detailed models
• large computational effort:

• precomputation
• numerical approximations
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Physics Engines und MMO-Server

• majority of the results from a classical physics engine are only 
required for a realistic display

e.g. particle filters, rag-doll animations,..
• joint computation of game state and graphic display often makes 

sense because they are based on the same effectHohe Tick-Raten
• use on the client side because display is available anyway
• on sever side mechanics too detailed to be computed for all game 

entities
• simplifications on the server side are often sufficient to implement 

game design
• use physics engines to determine parameters and approximations

on the server side
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Spatial Management in Game Servern

• majority of games takes place in a spatial environment  
(2D/3D maps, …) 

• action processing, NPC control and network layer 
requires spatial query processing:
• Which other game entities are within interaction range?

(AoI = Area of Interest)
• supports collision detection (cmp. Physics Engine) and area 

intersections (prefiltering)
• Which other game entity is closest?
• Does a player enter the aggro range of a NPC?

Hit-
Box/Range

Attack-
Range
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Spatial Queries (1) 
Spatial queries (here w.r.t to euclidian distance IR2)
• Range-Query

• Box-Query

ε

x

y
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Spatial Queries (2) 
• Intersection Query

• NN-Query

(q,r)

q

v
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Spatial Management for Game Servers

• for small game worlds with limited game entities
=> organize spatial position in a list

• process queries by sequential scans
• with high query frequencies and large numbers of 

moving objects query processing becomes expensive
example: 1000 game entities in one zone, 24 ticks/s

=> naive AoI computation requires 24.000.000 
distance computations per second

• conclusion: the cost for spatial query processing 
strongly increases with the size of the game state
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Efficiency Tuning for Spatial Queries

• methods to reduce the number of considered objects 
(pruning)
• distribute the game world (zoning, instancing, sharding, …)
• index structures (BSP-Tree, KD-Tree, R-Tree, Ball-Tree)

• reduce the number of spatial queries
• reduce query ticks
• spatial publish subscribe

• efficient query processing
• nearest-neighbor queries
• ε-range Join (simulaneously compute all AoIs) 
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