

Lecture Notes for Managing and Mining Multiplayer Online Games Summer Semester 2017

Chapter 10: Artificial Intelligence

Lecture Notes © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter Overview

- managing computer controlled entities
- modeling decision processes
- rule based behavior and state machines
- optimizing behavior
- non-deterministic behavior
- algorithms for AI engines and special decision problems
 - pathfinding in open environments
 - antagonistic search

Formal Decision Processing

- State space S: set of all possible situations.
 (e.g. positions of all figures on the chess board + who is able to make a term)
- Actions A_s: Given a situation s, A_s describes the set of all actions an entity might perform. (e.g. all valid moves for the current player)
- Selecting action a ∈ A_s in situation s ∈ S might lead to a transition to a new state s*.
 - Case I: there is only on outcome s*
 - Case II: s* is part of a subset $S^* \subseteq S$. It might hold that s $\subseteq S$.
- Given S* we have to consider the likelihood $Pr(s^*|s,a)$ for each $s^* \in S^*$.
- => the same action in the same situation might lead to different results (luck, behavior reacts differently...)

Formal Decision Processing

What is the best action in a situation?

- reward: reaching a state s might yield a reward R(s) (negative rewards = cost)
- a state might be terminal (no action left, target reached)
- utility of a sequence of states $(s_0, ..., s_n)$ being generated by a sequence of actions $(a_0, ..., a_{n-1})$.
 - finite horizon: $U_h = \sum_{i=0}^n R(s_i)$
 - infinite horizon: $U_h = \sum_{i=0}^n \lambda^i R(s_i)$ where $0 < \lambda_i < 1$
- under uncertainty state transitions:
 - multiple (s₀,..,s_n) might be observed when starting at s₀ (n is not fixed)
 => policy π: for each s∈S, select an action a∈A_s.
 - the utility of a policy π is the expected utility over all possible sequences starting in s: $U^{\pi}(s) = E\left[\sum_{i=0}^{\infty} \lambda^{i} R(s_{i})\right]$

Formal Decision Processing

- an optimal policy maximizes the utility: $\pi^* = argmax_{\pi \in \Pi} U^{\pi}(s)$
- Bellman equation for iterative computation

 $U(s) = R(s) + \lambda \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$

simple optimization based on value iteration:

```
repeat

U:=U',\delta := 0

for each state s in S do

U'(s):= R(s) + \lambda \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')

if |U'(s) - U(s)|> \delta then

\delta := |U'(s) - U(s)|

until \delta < \epsilon(1 - \lambda) / \lambda

return
```

Action-Generation for NPCs

Types of Computer Controlled Entities:

NPCs (Non-Player Characters), **MOBs** (Mobile Objects) or **Bots** (automated control for player characters) must create actions to be able to act.

Important Aspects:

- granularity: control over one or several game Entities
- computational cost vs. behavioral complexity
- where are NPCs controlled (server or client)
- deterministic vs. probabilistic behavior
- how realistic is the behavior/what is good behavior

Basic Build of an AI (Autonomous Agents)

Task:

- generation of the next action
- appropriate to the actual state

AI-Control

Synchronization of action processing and action creation:

- calling action creation
 - **Time-controlled**: Action requests are inquired regularly
 - **Event-controlled**: Certain changes of GS can inquire an action request. (Player enters Aggro-Range)
- the action creation:
 - map game state observation to an internals state
 - output the action from current policy
- open question: how are the policies created
 - for a small state space the complete policies can be precomputed and stored
 - the granularity of an action might be to high to put into a particular action. (e.g. run after enemy requires a policy for the best path)
 - this low level policies/plans might can be computed on the fly

Action Generation

- What is requested when from the game state?
- One central request from Game State ("all perceptions") vs. several requests (selective perception)
- How are actions generated?
 - Organized with rules or state machines?
 - Deterministic or randomized actions?
- Implementation
 - Programming in game engine language
 - Programming in script language (e.g. LUA)

Example: "Autocamp 2000"

example policy for a RPG farm bot:

(http://www.gamespy.com/articles/489/489833p1.html)

- 1) If invited by any group => join group
- 2) If in a group => follow behind the leader
- 3) If sees a monster => attack
- 4) If someone says something ending in a question mark => respond by saying "Dude?"
- 5) If someone says something ending in an exclamation point => respond by saying "Dude!"
- 6) If someone says something ending with a period
 => respond by randomly saying one of three things: "Okie", "Sure", or "Right on"
- 7) EXCEPTION: If someone says something directly to you by mentioning your name, respond by saying "Lag."

Example

KillSwitch: [Shouting] Does anyone want to join our hunting party?

Farglik: [Powered by the Autocamp 2000] Dude?

[KillSwitch invites Farglik to join the group.]

[Farglik joins the group]

KillSwitch: We're gonna go hunt wrixes.

Farglik: Right on.

[The group of players runs out, Farglik following close behind. Farglik shoots at every little monster they pass.]

KillSwitch: Why are you attacking the durneys?

Farglik: Dude?

KillSwitch: The durneys, the little bunny things -- why do you keep shooting at them?

Farglik: Dude?

KillSwitch: Knock it off guys, I see some wrixes up ahead. Let's do this.

Farglik: Right on.

[The group encounters a bunch of dangerous wrixes, but they gang up and shoot every one of them.]

KillSwitch: We rock!

Farglik: Dude!

Troobacca: We so OWNED them!

Farglik: Dude!

Example

KillSwitch: Uh oh, hang on. Up ahead are some Sharnaff bulls. We can't handle them, so don't shoot.

Farglik: Okie.

[Farglik shoots one of the Sharnaff bulls.]

[The bull attacks; Trobacca and several other party members are killed before they beat it.]

KillSwitch: You IDIOT! Farglik why did you shoot at them?

Farglik: Lag.

KillSwitch: Well don't do it again.

Farglik: Sure.

[Farglik shoots at another Sharnaff bull.]

[The entire party is slaughtered except for Farglik.]

[... Farglik stands there, alone, for several hours ...]

Control with Rules

- **Body**: predicate logical expression on the game state
- Head: List of actions to be inserted into the task-list
- Control consists of a list of rules
- Rule is chosen by priority sorting
 => first applicable rule creates action

Disadvantages:

- Rule bodies are often redundant
- High expense of finding the applicable rule

Example:

- NPC.inbattle() ^ (NPC.health < 50) => NPC.runAwayFrom(NPC.battle().getMaxAggroMob())
- NPC.inbattle() \lapha (NPC.health > 50) => hit (NPC.battle().getMaxAggroMob())
- (NPC.health < 50) \lapha (NPC.inv.contains(Melone)) => NPC.eat(Melone)
- NPC.inGroup() => Follow(NPC.GroupLeader)
- NPC.hasInvite() => NPC.join(NPC.invitation.getGroup())
- ___=> NPC.wait()

Control with hierarchical state machines

Idea: Combining rules by state of the NPC

- \Rightarrow Only the rules applicable to the actual state are being evaluated
- \Rightarrow Actual NPC state is part of the game state
- \Rightarrow For complex MOBs states can be further differentiated
- ⇒ Changing state through action handling (e.g. Monster breaks off pursuit=> Change from *battle* to *base*)

Example: State Machine

- UPPER CASE: event based transition
- lower case: action based transition

Processing with State Machines

Process description:

- 1. Requesting **GS** (information determining state)
- 2. Determining present state
 - clear allocation with disjunctive states (e.g. War and Peace)
 - unambiguous determination with priorities(e.g. 1:battle, 2:group, 3:base)
- 3. Requesting **GS** (state specific information)
- 4. Generating action (Use of local rules)
- 5. perform action

Determinism and behavior change

• Deterministic behavior:

MOBs generate identical actions in identical situations

• Probabilistic behavior:

- Rules' heads contain several possible actions
 => Choosing with a random process
- Several rules may be applicable in a situation => randomly selecting the rules
- Determining current state or sub state is random

• Learning behavior:

- usually the state space S and the corresponding actions A are determined by the game. (S might be an abstraction of possible game states)
- learning corresponds to selecting the best action for each situation
- Markov decision processes: cf. formal view in the beginning
 - transition probabilities for each a_s must be known.
 - several algorithms for finding optimal policies
- Reinforcement learning:
 - transition probabilities are unknown but samples are available (simulation!)
 - learn the expected future rewards directly from the samples

AI-Engine and AI-Services

- Action generation and AI control make base operations necessary that efficiently and generically complete certain tasks:
 - Finding entry and Exit points
 - Finding the shortest route
 - Antagonistic behavior
 - Swarm behavior
 - ...
- AI-Engine: Collection of services useful for implementing AI

Pathfinding in Open Environments

- open environment: 2D Space ($\subseteq IR^2$)
- MOBs can move freely
- obstacles block direct connections
- presenting obstacles with:
 - polygons
 - pixel-presentation
 - any geometric form (Circle, Ellipse, ...)

solution for polygon presentation:

- deriving a graph for the map containing the shortest routes (visibility graph)
- integrate start and target points
- use of pathfinding algorithms like Dijkstra, A* or IDA*

Visibility Graph

- finding the shortest path in an open environment is a search over an infinite search area
- solution: restricting the search area with following properties of optimal paths:
 - waypoints of every shortest path are either start, target or corners of an obstaclepolygon.
 - paths cannot intersect polygons.
- the shortest path in the open environment U is also part of the visibility graph G_U(V,E).

Visibility Graph

Environment: U

- Set of polygons $U=(P_1, ..., P_n)$ (**Obstacles**)
- Polygon P: planar cyclic graph: $P = (V_P, E_P)$ Visibility graph: $G_U(V, E)$
- Nodes: Corners of polygons $P = \{V_1, ..., V_l\}$ in U: $V_U = \bigcup_{P \in U} V_P$
- *Edges:* All edges of polygons with all edges of nodes from different polygons that do not intersect another polygon-edge.

$$E_{U} = \bigcup_{P \in U} E_{P} \cup \{(x, y) | x \in P_{i} \land y \in P_{j} \land i \neq j \land \bigcup_{P \in U} \bigcup_{e \in E_{P}} \{x, y\} \cap e = \{\}\}$$

Remarks:

- This definition applies to convex obstacles. For concave polygons the convex shell must be calculated additionally. For any thus calculated additional edges testing for intersection with polygon edges becomes necessary.
- This definition includes a naive algorithm ($O(n^3)$) to construct a visibility graph. Die Derivation of the visibility graph can be optimized. (O'Rourke 87: $O(n^2)$)

Example: Visibility Graph

Edges for the node A being tested and discarded.

Visibility Graph: Red segments run between polygons. Green segments mark the polygons' borders.

Expansion with Start- and Target-Nodes

- visibility graph can be pre-calculated for static environments
- mobile objects must be integrated into the graph before calculation
- insert start S and taget Z as point polygons
- connect the new nodes to with all edges unless an intersection with a polygon occurs

Dijkstra

Used Data Structures:

- PriorityQueue Q (Contains paths sorted descending by cost)
- cost table T (contains cost for the currently best path for all visited nodes)

Pseudo-Code:

```
FUNCTION Path shortestPath(Node start, Node target)
```

```
Q.insert(new Path(start,0))
WHILE(Q.notlsEmpty())
     Path aktPath = Q.getFirst()
         IF aktPath.last() == target THEN
                                                          //result found
               return aktPath
         ELSE
               FOR Node n in aktPath.last().nachfolger() DO //extending of current path
                   Path newPath = aktPath.extend(n)
                   IF newPath.cost()<T.get(newPath.last()) THEN //update if optimal for now
                      T.update(newPath.last,newPath.cost)
                      Q.insert(newPath,newPath.cost)
                   ENDIF
               ENDDO
         ENDIF
ENDWHILE
```

RETURN NULL //there is no path

ENDFUNCTION

A*-Search

- Dijkstra's algorithm contains no information of the direction to the target
 - => expansion of the search into all directions until the target is found
- But indications exist for the direction the search should head
- A*-Search formalizes these "indications" into an optimistic forward estimation:
 - h(n, target) for a node n
- h(n,target) indicates a lower bound for the minimum cost to reach the target
- improves the order of the search through sorting the priority queue by minimal total cost to target
- allows to prune path P as soon as it's costs plus the heuristic are greater than the best result up to now:
 P.cost()+h(pfad1.last(),target) > bestPath.cost()
- standard heuristic to estimate the route: Euclidian distance between actual position and target position

Pseudo Code: A*-Search

Pseudo Code:

FUNCTION Path shortestPath(Node start, Node target) Q.insert(new Path(start),0) WHILE(Q.notIsEmpty()) Path aktPath = Q.getFirst() IF aktPath.last() == target THEN //found result return aktPath **ELSE** FOR Node n in aktPath.last().successor() DO //expanding the current path Path newPath = aktPath.extend(n)IF newPath.cost()<T.get(newPath.last()) THEN //update if optimal so far T.update(newPath.last, newPath.cost()) Q.insert(newPath, newPath.cost() +h(newPath.getLast(), target)) **ENDIF ENDDO ENDIF ENDWHILE RETURN NULL** //there is no path **ENDFUNCTION**

Visibility Graph for extended objects

- MOBs usually have a spatial expansion: Circle or Polygon
- Visibility graph is only feasible for pointrouting
- Adjusting the visibility graph regarding the spatial expansion of the object: Polygons are being expanded by the spatial extension (Minkowski Sum)

Problem with this solution:

- For circular expansion: Circles have an infinite number of corners
 => Visibility graph is not derivable
- For Polygon-Environment: object rotation should be considered

=> Every rotation requires a separate extension

Visibility Graph for extended Objects

Solution Approach:

- Polygons are approximated by surface of revolution => Circle
- Circles are approximated by minimal surrounding polygons (MUP)
 => e.g. hexagon, octagon
- Form Minkowski sum with the MUPs and derive visibility graph.

Remarks:

- Paths are not optimal
- Passages are considered conservatively
- Curves are taken angular
- MMO should only have a limited amount of bounding box sizes because each requires it's own graph

Minkowski-Sum in different rotations of the same shape

Double approximation of surface of revolution and minimal surrounding Hexagon

More Pathfinding Methods

Other Methods:

- approximation polygons through polygons with less corners
- hierarchic Routing for longer routes
- precalculate and store shortest paths in dedicated data structures
- grid based graphs: overlay the map with a grid and route over cell centers.

Conclusion:

Routing is an old but still active field of research in computer sciences.

Antagonistic Player Behavior

How is an AI capable to react to a player's behavior?

- Al reads the current state of the player and derives a matched action.
- select a matching action with
 - => Precalculating/Estimating an action's result
 - => Evaluation of expected results with value functions/heuristics

Example: Option 1: Monster M hits player S => player S has 900 HP remaining

> Option 2: Monster M flees from S => Player S has 1000 HP remaining

Evaluation: Option 1 is preferred, since the enemy looses 100 HP.

Antagonistic Search

Problem: Simple model does not take the opponent acting to increase his own advantage into account.

in the example:

M attacks S and hits M for 100 HP

 \Rightarrow S hits M for 1000 HP

result: S has 900 HP and M is dead

antagonistic search from game theory offers a formal framework for reactive behavior.

Base Case:

turn based game: Action can be sequenced
=> finite number of alternative actions for every turn

Antagonistic Search

Given:

- *GS_i*: score before move i. players: S1 and S2.
- actions of player S_j for GS :action(S_j , GS_i) = { A_1 , ..., A_k)
- valuation function $H: GS \rightarrow IR$ (the higher, the better for player S) Search-Tree:
- complete tree: contains all possible courses of play (normally to big)
- incomplete search: search GS maximizing H(GS) for ۲ h turns GS_0 (1 turn = 2 half-turns = S1 and S2 act once) $action(S_1, GS_0)$ action of S1 depends on S2's reaction $GS_{1,\underline{3}}$ *GS*_{1,2} $GS_{1,1}$ $action(S_2 GS_1)$ $action(S_2 GS_{12})$ $action(S_2, GS_{1.1})$ *GS*_{2,3} *GS*_{2,3} $GS_{2,4}$ *GS*_{2,5} $GS_{2,6}$ $GS_{2.3}$ $GS_{2.7}$ $action(S_{1}, GS_{33})$ $action(S_1, GS_{2,3})$ $action(S_1, GS_{2,3})$ $GS_{3,3}$ $GS_{3,5}$ $GS_{3,1}$ $GS_{3,2}$ $GS_{3.4}$ GS_{37} $GS_{3,2}$ GS_{33}

Min-Max Search in antagonistic Search Trees

- rate a move A to maximize H(GS) after S2's reaction (tries to minimize H).
- Search depth:
 - fixed depths
 - \Rightarrow time may vary and is hard to estimate
 - \Rightarrow turbulent positions make pruning of some branches unfavorable
 - iterative deepening:
 - multiple calculations with increasing search depth
 - on time-out: abort and use of last complete calculation (for each level the total cost doubles)
 - turbulent positions: single branches are being expanded if leaves are turbulent.

Alpha-Beta Pruning

Idea: If a move already exists, that is evaluated with α even after a counter reaction, all branches creating a value less than α can be pruned.

- α : S1 reaches at least α on this sub-tree (H(GS) > α)
- β : S2 reaches at most β on this sub-tree (H(GS) < β)

Algorithm:

- traverse search tree with depth-first search and fill inner nodes on the way back to the last branching
- for calculating inner nodes:
 - $\text{if } \beta < \alpha \text{ then} \\$
 - prune the remaining sub-tree
 - set β -value for the sub-tree if it's root is a min-node
 - set α -value for the sub-tree if it's root is a max-node
 - else set β -value to the minimum of min-nodes

set $\alpha\text{-value}$ to the maximum of max-nodes

Alpha-Beta Pruning

- *Idea*: If a move already exists, that is evaluated with α even after a counter reaction, all branches creating a value less than α can be cut.
- α : S1 reaches at least α on this sub-tree (H(GS) > α)
- β : S2 reaches at most β on this sub-tree (H(GS) < β)

Usability for general Games

expansion to more general games can be reached by adjusting the evaluation function:

- probabilistic games: maximize the expected value (e.g. Backgammon)
- incomplete information (e.g. Hearth Stone, ...)

expansion to several players:

min-nodes consider all players' actions
 (large number of player reactions might generate a large state space)

ceasing time synchronization:

- possible in principle, but the number of possible state transitions generally grows exponentially
- hard to calculate without restricting the search area

conclusion: The basic idea is applicable to any game, but in practice the state space and the state transitions strongly increases with a large number of players, possible temporal sequences and available actions.

Learning Goals

- modeling decision processes
- rules based policies
- state machines
- typical tasks for AI-Engines
- pathfinding in open environments
- pathfinding with expanded objects
- antagonistic Search
- Min-Max Search
- Alpha-Beta Pruning

Literature

- Nathan R. Sturtevant Memory-Efficient Abstractions for Pathfinding In Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE), 2007.
- Nathan R. Sturtevant, Michael Buro
 Partial pathfinding using map abstraction and refinement
 In Proceedings of the 20th national Conference on Artificial
 Intelligence, 2005.
- Joseph O'Rourke: Computational Geometry in C. 2nd Edition, Cambridge University Press, 1998.
- S. Russel, P. Norvig: Aritificial Intelligence: a modern approach, Pearson, 2016 (third edition)