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Chapter Overview

• managing computer controlled entities
• modeling decision processes
• rule based behavior and state machines
• optimizing behavior
• non-deterministic behavior
• algorithms for AI engines and special decision problems

• pathfinding in open environments
• antagonistic search
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Formal Decision Processing

• State space S: set of all possible situations.
(e.g. positions of all figures on the chess board + who is 
able to make a term)

• Actions As: Given a situation s, As describes the set of all 
actions an entity might perform. (e.g. all valid moves for 
the current player)

• Selecting action a ∈ As in situation s ∈ S might lead to a 
transition to a new state s*.
• Case I:  there is only on outcome s*
• Case II: s* is part of a subset S* ⊆ S. It might hold that s ⊆ S.

• Given S* we have to consider the likelihood 
Pr(s*|s,a) for each s* ∈ S*.

=> the same action in the same situation might lead to 
different results (luck, behavior reacts differently...)
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Formal Decision Processing

What is the best action in a situation?

• reward: reaching a state s might yield a reward R(s)    
(negative rewards = cost)

• a state might be terminal (no action left, target reached)

• utility of a sequence of states (s0,..,sn) being generated by 
a sequence of actions (a0,..,an-1).
• finite horizon: 𝑈𝑈ℎ = ∑𝑖𝑖=0𝑛𝑛 𝑅𝑅(𝑠𝑠𝑖𝑖)
• infinite horizon: 𝑈𝑈ℎ = ∑𝑖𝑖=0𝑛𝑛 𝜆𝜆𝑖𝑖𝑅𝑅 𝑠𝑠𝑖𝑖 where 0<𝜆𝜆𝑖𝑖<1

• under uncertainty state transitions:
• multiple (s0,..,sn) might be observed when starting at s0 

(n is not fixed) 
=> policy π: for each s∈S, select an action a∈As.

• the utility of a policy π is the expected utility over all possible 
sequences starting in s: 𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝐸𝐸 ∑𝑖𝑖=0∞ 𝜆𝜆𝑖𝑖𝑅𝑅(𝑠𝑠𝑖𝑖)
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Formal Decision Processing

• an optimal policy maximizes the utility: 
𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋∈Π 𝑈𝑈𝜋𝜋 𝑠𝑠

• Bellman equation for iterative computation

𝑈𝑈 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + λ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎∈𝐴𝐴(𝑠𝑠) ∑𝑠𝑠𝑠 𝑃𝑃 𝑠𝑠𝑠 𝑠𝑠,𝑎𝑎 𝑈𝑈(𝑠𝑠𝑠)
• simple optimization based on value iteration:

repeat
U:=U’,δ := 0
for each state s in S do

U’(s):= R(s) + λ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎∈𝐴𝐴(𝑠𝑠) ∑𝑠𝑠𝑠 𝑃𝑃 𝑠𝑠𝑠 𝑠𝑠, 𝑎𝑎 𝑈𝑈(𝑠𝑠𝑠)
if |U’(s) – U(s)|> δ then

δ := |U’(s) – U(s)|
until δ < ε(1- λ)/ λ
return  
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Action-Generation for NPCs

Types of Computer Controlled Entities:
NPCs (Non-Player Characters),  MOBs (Mobile Objects) or 
Bots (automated control for player characters) must create 
actions to be able to act.

Important Aspects:
• granularity: control over one or several game Entities
• computational cost vs. behavioral complexity
• where are NPCs controlled (server or client)
• deterministic vs. probabilistic behavior
• how realistic is the behavior/what is good behavior
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Basic Build of an AI (Autonomous Agents)

Task:
• generation of the next action
• appropriate to the actual state

Game 
State

Action1
Action2

…
Action n

Perception

(Requesting 
Game State)

map to S

AI-Engine

policy

AI-Controlaction handling

NPC-ControlGame Core
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AI-Control

Synchronization of action processing and action creation:
• calling action creation

• Time-controlled: Action requests are inquired regularly
• Event-controlled: Certain changes of GS can inquire an action request. 

(Player enters Aggro-Range)
• the action creation:

• map game state observation to an internals state
• output the action from current policy

• open question: how are the policies created 
• for a small state space the complete policies can be precomputed and 

stored
• the granularity of an action might be to high to put into a particular 

action. (e.g. run after enemy requires a policy for the best path)
• this low level policies/plans might can be computed on the fly



9

Action Generation
• What is requested when from the game state?
• One central request from Game State („all perceptions“)

vs. several requests (selective perception)
• How are actions generated?

• Organized with rules or state machines?
• Deterministic or randomized actions?

• Implementation
• Programming in game engine language
• Programming in script language (e.g. LUA)
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Example: „Autocamp 2000“

example policy for a RPG farm bot: 
(http://www.gamespy.com/articles/489/489833p1.html)

1) If invited by any group => join  group
2) If in a group  => follow behind the leader 
3) If sees a monster => attack 
4) If someone says something ending in a question mark 

=> respond by saying "Dude?"
5) If someone says something ending in an exclamation point

=> respond by saying "Dude!"
6) If someone says something ending with a period

=> respond by randomly saying one of three things: "Okie“, 
"Sure“, or "Right on"

7) EXCEPTION: If someone says something directly to you by 
mentioning your name, respond by saying "Lag."
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Example
KillSwitch: [Shouting] Does anyone want to join our hunting party?
Farglik: [Powered by the Autocamp 2000] Dude?
[KillSwitch invites Farglik to join the group.]
[Farglik joins the group]
KillSwitch: We're gonna go hunt wrixes.
Farglik: Right on.
[The group of players runs out, Farglik following close behind. Farglik shoots at every little 

monster they pass.]
KillSwitch: Why are you attacking the durneys?
Farglik: Dude?
KillSwitch: The durneys, the little bunny things -- why do you keep shooting at them?
Farglik: Dude? 
KillSwitch: Knock it off guys, I see some wrixes up ahead. Let's do this.
Farglik: Right on.
[The group encounters a bunch of dangerous wrixes, but they gang up and shoot every one of 

them.]
KillSwitch: We rock!
Farglik: Dude!
Troobacca: We so OWNED them!
Farglik: Dude!
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Example
KillSwitch: Uh oh, hang on. Up ahead are some Sharnaff bulls. We can't handle them, so don't 

shoot.
Farglik: Okie. 
[Farglik shoots one of the Sharnaff bulls.]
[The bull attacks; Trobacca and several other party members are killed before they beat it.]
KillSwitch: You IDIOT! Farglik why did you shoot at them?
Farglik: Lag.
KillSwitch: Well don't do it again.
Farglik: Sure.
[Farglik shoots at another Sharnaff bull.]
[The entire party is slaughtered except for Farglik.] 

[ ... Farglik stands there, alone, for several hours ... ]
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Control with Rules
• Body: predicate logical expression on the game state
• Head: List of actions to be inserted into the task-list
• Control consists of a list of rules
• Rule is chosen by priority sorting

=> first applicable rule creates action
Disadvantages:
• Rule bodies are often redundant
• High expense of finding the applicable rule

Example:
• NPC.inbattle() ∧ (NPC.health < 50) => NPC.runAwayFrom(NPC.battle().getMaxAggroMob())
• NPC.inbattle() ∧ (NPC.health > 50) => hit (NPC.battle().getMaxAggroMob()) 
• (NPC.health < 50) ∧ (NPC.inv.contains(Melone)) => NPC.eat(Melone)
• NPC.inGroup() => Follow(NPC.GroupLeader)
• NPC.hasInvite() => NPC.join(NPC.invitation.getGroup())
• __=> NPC.wait()
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Control with hierarchical state machines
Idea: Combining rules by state of the NPC
⇒ Only the rules applicable to the actual state are being evaluated
⇒ Actual NPC state is part of the game state
⇒ For complex MOBs states can be further differentiated
⇒ Changing state through action handling

(e.g. Monster breaks off pursuit=> Change from battle to base)

battle

group

base
• ((NPC.health < 50) (NPC.inv.contains(Melone)) => NPC.eat(Melone)
• NPC.hasInvite() => NPC.join(NPC.invitation.getGroup())
• __=> NPC.wait()

• __=>Follow(NPC.GroupLeader)

• (NPC.health < 50) => NPC.runAwayFrom(NPC.battle().getMaxAggroMob())
• (NPC.health > 50) => hit (NPC.battle().getMaxAggroMob()) 
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Example: State Machine

battle group

base
joinGroup(invitation.getGroup())
invite(Player)

leaveGroup()
KICKOUT

ENEMIESDEAD(NPC.isInGroup())

ENEMIESDEAD(¬NPC.isInGroup())

attack(X)
ISATTACKED()
GROUPATTACK 

attack(X)
ISATTACKED()

• UPPER CASE: event based transition
• lower case: action based transition
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Processing with State Machines

Process description:

1. Requesting GS 
(information determining state)

2. Determining present state
• clear allocation with disjunctive states (e.g. War and Peace)
• unambiguous determination with priorities(e.g. 1:battle, 2:group, 3:base)

3. Requesting GS
(state specific information)

4. Generating action 
(Use of local rules)

5. perform action
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Determinism and behavior change
• Deterministic behavior:

MOBs generate identical actions in identical situations
• Probabilistic behavior:

• Rules’ heads contain several possible actions
=> Choosing with a random process

• Several rules may be applicable in a situation
=> randomly selecting the rules

• Determining current state or sub state is random

• Learning behavior:
• usually the state space S and the corresponding actions A are determined by the 

game.  (S might be an abstraction of possible game states)

• learning corresponds to selecting the best action for each situation

• Markov decision processes: cf. formal view in the beginning

• transition probabilities for each as must be known.

• several algorithms for finding optimal policies

• Reinforcement learning:

• transition probabilities are unknown but samples are available (simulation!)

• learn the expected future rewards directly from the samples 
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AI-Engine and AI-Services

• Action generation and AI control make base operations 
necessary that efficiently and generically complete certain 
tasks:
• Finding entry and Exit points
• Finding the shortest route
• Antagonistic behavior
• Swarm behavior
• …

• AI-Engine: Collection of services useful for implementing AI
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Pathfinding in Open Environments
• open environment: 2D Space (⊆ ΙR2)
• MOBs can move freely
• obstacles block direct connections
• presenting obstacles with:

• polygons
• pixel-presentation
• any geometric form

(Circle, Ellipse, …)

solution for polygon presentation:
• deriving a graph for the map 

containing the shortest routes
(visibility graph)

• integrate start and target points
• use of pathfinding algorithms like 

Dijkstra, A* or IDA*

A
B
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Visibility Graph

• finding the shortest path in an 
open environment is a search 
over an infinite search area

• solution: restricting the search 
area with following properties of 
optimal paths:
• waypoints of every shortest 

path are either start, target 
or corners of an obstacle-
polygon.

• paths cannot intersect 
polygons.

• the shortest path in the open 
environment U is also part of the 
visibility graph GU(V,E).

A
B
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Visibility Graph
Environment: U
• Set of polygons U=(P1, …,Pn) (Obstacles)
• Polygon P: planar cyclic graph: P = (VP,EP)
Visibility graph: GU(V,E) 
• Nodes: Corners of  polygons P = {V1, …,Vl)  in U:

• Edges: All edges of polygons with all edges of nodes from different 
polygons that do not intersect another polygon-edge.

Remarks:
• This definition applies to convex obstacles. For concave polygons the 

convex shell must be calculated additionally. For any thus calculated 
additional edges testing for intersection with polygon edges becomes 
necessary.

• This definition includes a naive algorithm (O(n3)) to construct a visibility 
graph. Die Derivation of the visibility graph can be optimized. (O‘Rourke 87: 
O(n2))
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Example: Visibility Graph

A

Edges for the node A being tested 
and discarded.

Visibility Graph: Red segments run 
between polygons. Green 
segments mark the polygons’ 
borders.
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Expansion with Start- and Target-Nodes
• visibility graph can be pre-calculated for static environments
• mobile objects must be integrated into the graph before calculation
• insert start S and taget Z as point polygons
• connect the new nodes to with all edges unless an intersection with a 

polygon occurs

A
B
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Dijkstra
Used Data Structures:

• PriorityQueue Q (Contains paths sorted descending by cost)
• cost table T (contains cost for the currently best path for all visited nodes)

Pseudo-Code:
FUNCTION Path shortestPath(Node start, Node target)

Q.insert(new Path(start,0))
WHILE(Q.notIsEmpty())

Path aktPath = Q.getFirst()
IF aktPath.last()  == target THEN //result found

return aktPath
ELSE

FOR Node n  in aktPath.last().nachfolger() DO //extending of current path
Path newPath = aktPath.extend(n)
IF newPath.cost()<T.get(newPath.last()) THEN //update if optimal for now

T.update(newPath.last,newPath.cost)
Q.insert(newPath,newPath.cost)

ENDIF
ENDDO

ENDIF
ENDWHILE
RETURN NULL //there is no path

ENDFUNCTION
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A*-Search
• Dijkstra’s algorithm contains no information of the 

direction to the target
=> expansion of the search into all directions until 

the target is found
• But indications exist for the direction the search 

should head
• A*-Search formalizes these “indications” into an 

optimistic forward estimation: 
h(n, target) for a node n 

• h(n,target) indicates a lower bound for the 
minimum cost to reach the target

• improves the order of the search through sorting 
the priority queue by minimal total cost to target

• allows to prune path P as soon as it’s costs plus the 
heuristic are greater than the best result up to now:

P.cost()+h(pfad1.last(),target) >  bestPath.cost()

• standard heuristic to estimate the route:
Euclidian distance between actual position and 
target position

Solution

Search area

Search Area
Solution

Heuristic
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Pseudo Code: A*-Search
Pseudo Code:

FUNCTION Path shortestPath(Node start, Node target)
Q.insert(new Path(start),0)
WHILE(Q.notIsEmpty())

Path aktPath = Q.getFirst()
IF aktPath.last()  == target THEN  //found result

return aktPath
ELSE

FOR Node n  in aktPath.last().successor() DO //expanding the current path
Path newPath = aktPath.extend(n)
IF newPath.cost()<T.get(newPath.last()) THEN //update if optimal so far

T.update(newPath.last, newPath.cost())
Q.insert(newPath, newPath.cost() +h(newPath.getLast(), target))

ENDIF
ENDDO

ENDIF
ENDWHILE
RETURN NULL //there is no path

ENDFUNCTION
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Visibility Graph for extended objects
• MOBs usually have a spatial expansion: 

Circle or Polygon
• Visibility graph is only feasible for point-

routing
• Adjusting the visibility graph regarding 

the spatial expansion of the object:
Polygons are being expanded by the 
spatial extension (Minkowski Sum)

Problem with this solution:
• For circular expansion: Circles have an 

infinite number of corners
=> Visibility graph is not derivable

• For Polygon-Environment: object rotation 
should be considered
=> Every rotation requires a separate 
extension

Ziel

Start

Ziel

Start
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Visibility Graph for extended Objects
Solution Approach:
• Polygons are approximated by surface 

of revolution
=> Circle

• Circles are approximated by minimal 
surrounding polygons (MUP)
=> e.g. hexagon, octagon

• Form Minkowski sum with the MUPs 
and derive visibility graph.

Remarks:
• Paths are not optimal
• Passages are considered conservatively
• Curves are taken angular
• MMO should only have a limited 

amount of bounding box sizes because 
each requires it’s own graph

Goal

Start

Minkowski-Sum in different rotations of the same shape

Double approximation of surface of revolution 
and minimal surrounding Hexagon
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More Pathfinding Methods
Other Methods:
• approximation polygons through 

polygons with less corners
• hierarchic Routing for longer routes
• precalculate and store shortest paths 

in dedicated data structures
• grid based graphs: overlay the map 

with a grid and route over cell 
centers.

Conclusion:
Routing is an old but still active field 
of research in computer sciences.

A

B

A

B
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Antagonistic  Player Behavior

How is an AI capable to react to a player’s behavior?
• AI reads the current state of the player and derives a matched action.
• select a matching action with

=> Precalculating/Estimating an action’s result
=> Evaluation of expected results with value functions/heuristics

Example: Option 1: Monster M hits player S  
=> player S has 900 HP remaining

Option 2: Monster M flees from S  
=> Player S has 1000 HP remaining

Evaluation: Option 1 is preferred, since the enemy looses 100 HP.
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Antagonistic Search

Problem: Simple model does not take the opponent acting to 
increase his own advantage into account.

in the example:
M attacks S and hits M for 100 HP 
⇒ S hits M for 1000 HP 
result: S has 900 HP and M is dead 

antagonistic search from game theory offers a formal 
framework for reactive behavior. 
Base Case:
turn based game: Action can be sequenced
=> finite number of alternative actions for every turn
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Antagonistic Search
Given:
• GSi: score before move i. players: S1 and S2.
• actions of player Sj for GS :action(Sj , GSi ) = {A1, …, Ak)
• valuation function H: GS → IR  (the higher, the better for player S)
Search-Tree:
• complete tree: contains all possible courses of play (normally to big)
• incomplete search: search GS maximizing H(GS) for

h turns
(1 turn = 2 half-turns = S1 and S2 act once)

• action of S1 depends on S2’s reaction

GS0

GS1,1 GS1,2 GS1,3

action(S1 , GS0 ) 

action(S2 , GS1,1 ) action(S2 , GS1,2 ) action(S2, GS1,3 ) 

GS2,3GS2,3GS2,3 GS2,5GS2,4 GS2,6 GS2,7

action(S1 , GS2,3 ) 

GS3,3GS3,2GS3,1

action(S1 , GS2,3 ) 

GS3,5GS3,4

action(S1 , GS33 ) 

GS3,3GS3,2GS3,7

…. …. ….….
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Min-Max Search in antagonistic Search Trees
• rate a move A to maximize H(GS) after S2’s reaction (tries to minimize H).
• Search depth:

• fixed depths
⇒ time may vary and is hard to estimate
⇒ turbulent positions make pruning of some branches unfavorable
• iterative deepening: 

- multiple calculations with increasing search depth
- on time-out: abort and use of last complete calculation

(for each level the total cost doubles)
• turbulent positions: single branches are being expanded if leaves are turbulent.

3

552 1 6 103Min-Step (S2)

Max-Step (S1) 2 1 3
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Alpha-Beta Pruning
Idea: If a move already exists, that is evaluated with α even after a counter 

reaction, all branches creating a value less than α can be pruned.
• α: S1 reaches at least α on this sub-tree (H(GS) > α)
• β: S2 reaches at most β on this sub-tree (H(GS) < β)

Algorithm:
• traverse search tree with depth-first search and fill inner nodes on the way 

back to the last branching
• for calculating inner nodes:

if β < α then
• prune the remaining sub-tree
• set β-value for the sub-tree if it’s root is a min-node
• set α -value for the sub-tree if it’s root is a max-node

else set β-value to the minimum of min-nodes 
set α-value to the maximum of max-nodes



35

Alpha-Beta Pruning
Idea: If a move already exists, that is evaluated with α even after a counter 

reaction, all branches creating a value less than α can be cut.
• α: S1 reaches at least α on this sub-tree (H(GS) > α)
• β: S2 reaches at most β on this sub-tree (H(GS) < β)

554

4

α= 4 4

554

4

1262

4

554

4

2 65

5

α = 4

β = 2 β = 5

α = 5

β = 4

4

4

4

554

4

2 5

5

α = 4

3

1

1

α = 3

3

3

β = 1

β = 3

β < α

β < α

β < α

β < α

β = 4
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Usability for general Games
expansion to more general games can be reached by adjusting the evaluation 
function:
• probabilistic games: maximize the expected value (e.g. Backgammon)
• incomplete information (e.g. Hearth Stone, …)

expansion to several players: 
• min-nodes consider all players’ actions 

(large number of player reactions might generate a large state space)

ceasing time synchronization:
• possible in principle, but the number of possible state transitions generally 

grows exponentially
• hard to calculate without restricting the search area

conclusion: The basic idea is applicable to any game, but in practice the state 
space and the state transitions strongly increases with a large number of 
players, possible temporal sequences and available actions.
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Learning Goals

• modeling decision processes
• rules based policies
• state machines
• typical tasks for AI-Engines
• pathfinding in open environments
• pathfinding with expanded objects
• antagonistic Search
• Min-Max Search
• Alpha-Beta Pruning
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