
1

Lecture Notes for
Managing and Mining Multiplayer Online Games

Summer Semester 2017

Lecture Notes © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Chapter 10: Artificial Intelligence

2

Chapter Overview

• managing computer controlled entities
• modeling decision processes
• rule based behavior and state machines
• optimizing behavior
• non-deterministic behavior
• algorithms for AI engines and special decision problems

• pathfinding in open environments
• antagonistic search

3

Formal Decision Processing

• State space S: set of all possible situations.
(e.g. positions of all figures on the chess board + who is
able to make a term)

• Actions As: Given a situation s, As describes the set of all
actions an entity might perform. (e.g. all valid moves for
the current player)

• Selecting action a ∈ As in situation s ∈ S might lead to a
transition to a new state s*.
• Case I: there is only on outcome s*
• Case II: s* is part of a subset S* ⊆ S. It might hold that s ⊆ S.

• Given S* we have to consider the likelihood
Pr(s*|s,a) for each s* ∈ S*.

=> the same action in the same situation might lead to
different results (luck, behavior reacts differently...)

4

Formal Decision Processing

What is the best action in a situation?

• reward: reaching a state s might yield a reward R(s)
(negative rewards = cost)

• a state might be terminal (no action left, target reached)

• utility of a sequence of states (s0,..,sn) being generated by
a sequence of actions (a0,..,an-1).
• finite horizon: 𝑈𝑈ℎ = ∑𝑖𝑖=0𝑛𝑛 𝑅𝑅(𝑠𝑠𝑖𝑖)
• infinite horizon: 𝑈𝑈ℎ = ∑𝑖𝑖=0𝑛𝑛 𝜆𝜆𝑖𝑖𝑅𝑅 𝑠𝑠𝑖𝑖 where 0<𝜆𝜆𝑖𝑖<1

• under uncertainty state transitions:
• multiple (s0,..,sn) might be observed when starting at s0

(n is not fixed)
=> policy π: for each s∈S, select an action a∈As.

• the utility of a policy π is the expected utility over all possible
sequences starting in s: 𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝐸𝐸 ∑𝑖𝑖=0∞ 𝜆𝜆𝑖𝑖𝑅𝑅(𝑠𝑠𝑖𝑖)

5

Formal Decision Processing

• an optimal policy maximizes the utility:
𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋∈Π 𝑈𝑈𝜋𝜋 𝑠𝑠

• Bellman equation for iterative computation

𝑈𝑈 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + λ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎∈𝐴𝐴(𝑠𝑠) ∑𝑠𝑠𝑠 𝑃𝑃 𝑠𝑠𝑠 𝑠𝑠,𝑎𝑎 𝑈𝑈(𝑠𝑠𝑠)
• simple optimization based on value iteration:

repeat
U:=U’,δ := 0
for each state s in S do

U’(s):= R(s) + λ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎∈𝐴𝐴(𝑠𝑠) ∑𝑠𝑠𝑠 𝑃𝑃 𝑠𝑠𝑠 𝑠𝑠, 𝑎𝑎 𝑈𝑈(𝑠𝑠𝑠)
if |U’(s) – U(s)|> δ then

δ := |U’(s) – U(s)|
until δ < ε(1- λ)/ λ
return

6

Action-Generation for NPCs

Types of Computer Controlled Entities:
NPCs (Non-Player Characters), MOBs (Mobile Objects) or
Bots (automated control for player characters) must create
actions to be able to act.

Important Aspects:
• granularity: control over one or several game Entities
• computational cost vs. behavioral complexity
• where are NPCs controlled (server or client)
• deterministic vs. probabilistic behavior
• how realistic is the behavior/what is good behavior

7

Basic Build of an AI (Autonomous Agents)

Task:
• generation of the next action
• appropriate to the actual state

Game
State

Action1
Action2

…
Action n

Perception

(Requesting
Game State)

map to S

AI-Engine

policy

AI-Controlaction handling

NPC-ControlGame Core

8

AI-Control

Synchronization of action processing and action creation:
• calling action creation

• Time-controlled: Action requests are inquired regularly
• Event-controlled: Certain changes of GS can inquire an action request.

(Player enters Aggro-Range)
• the action creation:

• map game state observation to an internals state
• output the action from current policy

• open question: how are the policies created
• for a small state space the complete policies can be precomputed and

stored
• the granularity of an action might be to high to put into a particular

action. (e.g. run after enemy requires a policy for the best path)
• this low level policies/plans might can be computed on the fly

9

Action Generation
• What is requested when from the game state?
• One central request from Game State („all perceptions“)

vs. several requests (selective perception)
• How are actions generated?

• Organized with rules or state machines?
• Deterministic or randomized actions?

• Implementation
• Programming in game engine language
• Programming in script language (e.g. LUA)

10

Example: „Autocamp 2000“

example policy for a RPG farm bot:
(http://www.gamespy.com/articles/489/489833p1.html)

1) If invited by any group => join group
2) If in a group => follow behind the leader
3) If sees a monster => attack
4) If someone says something ending in a question mark

=> respond by saying "Dude?"
5) If someone says something ending in an exclamation point

=> respond by saying "Dude!"
6) If someone says something ending with a period

=> respond by randomly saying one of three things: "Okie“,
"Sure“, or "Right on"

7) EXCEPTION: If someone says something directly to you by
mentioning your name, respond by saying "Lag."

11

Example
KillSwitch: [Shouting] Does anyone want to join our hunting party?
Farglik: [Powered by the Autocamp 2000] Dude?
[KillSwitch invites Farglik to join the group.]
[Farglik joins the group]
KillSwitch: We're gonna go hunt wrixes.
Farglik: Right on.
[The group of players runs out, Farglik following close behind. Farglik shoots at every little

monster they pass.]
KillSwitch: Why are you attacking the durneys?
Farglik: Dude?
KillSwitch: The durneys, the little bunny things -- why do you keep shooting at them?
Farglik: Dude?
KillSwitch: Knock it off guys, I see some wrixes up ahead. Let's do this.
Farglik: Right on.
[The group encounters a bunch of dangerous wrixes, but they gang up and shoot every one of

them.]
KillSwitch: We rock!
Farglik: Dude!
Troobacca: We so OWNED them!
Farglik: Dude!

12

Example
KillSwitch: Uh oh, hang on. Up ahead are some Sharnaff bulls. We can't handle them, so don't

shoot.
Farglik: Okie.
[Farglik shoots one of the Sharnaff bulls.]
[The bull attacks; Trobacca and several other party members are killed before they beat it.]
KillSwitch: You IDIOT! Farglik why did you shoot at them?
Farglik: Lag.
KillSwitch: Well don't do it again.
Farglik: Sure.
[Farglik shoots at another Sharnaff bull.]
[The entire party is slaughtered except for Farglik.]

[... Farglik stands there, alone, for several hours ...]

13

Control with Rules
• Body: predicate logical expression on the game state
• Head: List of actions to be inserted into the task-list
• Control consists of a list of rules
• Rule is chosen by priority sorting

=> first applicable rule creates action
Disadvantages:
• Rule bodies are often redundant
• High expense of finding the applicable rule

Example:
• NPC.inbattle() ∧ (NPC.health < 50) => NPC.runAwayFrom(NPC.battle().getMaxAggroMob())
• NPC.inbattle() ∧ (NPC.health > 50) => hit (NPC.battle().getMaxAggroMob())
• (NPC.health < 50) ∧ (NPC.inv.contains(Melone)) => NPC.eat(Melone)
• NPC.inGroup() => Follow(NPC.GroupLeader)
• NPC.hasInvite() => NPC.join(NPC.invitation.getGroup())
• __=> NPC.wait()

14

Control with hierarchical state machines
Idea: Combining rules by state of the NPC
⇒ Only the rules applicable to the actual state are being evaluated
⇒ Actual NPC state is part of the game state
⇒ For complex MOBs states can be further differentiated
⇒ Changing state through action handling

(e.g. Monster breaks off pursuit=> Change from battle to base)

battle

group

base
• ((NPC.health < 50) (NPC.inv.contains(Melone)) => NPC.eat(Melone)
• NPC.hasInvite() => NPC.join(NPC.invitation.getGroup())
• __=> NPC.wait()

• __=>Follow(NPC.GroupLeader)

• (NPC.health < 50) => NPC.runAwayFrom(NPC.battle().getMaxAggroMob())
• (NPC.health > 50) => hit (NPC.battle().getMaxAggroMob())

15

Example: State Machine

battle group

base
joinGroup(invitation.getGroup())
invite(Player)

leaveGroup()
KICKOUT

ENEMIESDEAD(NPC.isInGroup())

ENEMIESDEAD(¬NPC.isInGroup())

attack(X)
ISATTACKED()
GROUPATTACK

attack(X)
ISATTACKED()

• UPPER CASE: event based transition
• lower case: action based transition

16

Processing with State Machines

Process description:

1. Requesting GS
(information determining state)

2. Determining present state
• clear allocation with disjunctive states (e.g. War and Peace)
• unambiguous determination with priorities(e.g. 1:battle, 2:group, 3:base)

3. Requesting GS
(state specific information)

4. Generating action
(Use of local rules)

5. perform action

17

Determinism and behavior change
• Deterministic behavior:

MOBs generate identical actions in identical situations
• Probabilistic behavior:

• Rules’ heads contain several possible actions
=> Choosing with a random process

• Several rules may be applicable in a situation
=> randomly selecting the rules

• Determining current state or sub state is random

• Learning behavior:
• usually the state space S and the corresponding actions A are determined by the

game. (S might be an abstraction of possible game states)

• learning corresponds to selecting the best action for each situation

• Markov decision processes: cf. formal view in the beginning

• transition probabilities for each as must be known.

• several algorithms for finding optimal policies

• Reinforcement learning:

• transition probabilities are unknown but samples are available (simulation!)

• learn the expected future rewards directly from the samples

18

AI-Engine and AI-Services

• Action generation and AI control make base operations
necessary that efficiently and generically complete certain
tasks:
• Finding entry and Exit points
• Finding the shortest route
• Antagonistic behavior
• Swarm behavior
• …

• AI-Engine: Collection of services useful for implementing AI

19

Pathfinding in Open Environments
• open environment: 2D Space (⊆ ΙR2)
• MOBs can move freely
• obstacles block direct connections
• presenting obstacles with:

• polygons
• pixel-presentation
• any geometric form

(Circle, Ellipse, …)

solution for polygon presentation:
• deriving a graph for the map

containing the shortest routes
(visibility graph)

• integrate start and target points
• use of pathfinding algorithms like

Dijkstra, A* or IDA*

A
B

20

Visibility Graph

• finding the shortest path in an
open environment is a search
over an infinite search area

• solution: restricting the search
area with following properties of
optimal paths:
• waypoints of every shortest

path are either start, target
or corners of an obstacle-
polygon.

• paths cannot intersect
polygons.

• the shortest path in the open
environment U is also part of the
visibility graph GU(V,E).

A
B

21

Visibility Graph
Environment: U
• Set of polygons U=(P1, …,Pn) (Obstacles)
• Polygon P: planar cyclic graph: P = (VP,EP)
Visibility graph: GU(V,E)
• Nodes: Corners of polygons P = {V1, …,Vl) in U:

• Edges: All edges of polygons with all edges of nodes from different
polygons that do not intersect another polygon-edge.

Remarks:
• This definition applies to convex obstacles. For concave polygons the

convex shell must be calculated additionally. For any thus calculated
additional edges testing for intersection with polygon edges becomes
necessary.

• This definition includes a naive algorithm (O(n3)) to construct a visibility
graph. Die Derivation of the visibility graph can be optimized. (O‘Rourke 87:
O(n2))

UP

PU VV
∈

=

{}}),(:),({ =∩∀∀∧≠∧∈∧∈∪=
∈∈

∈

eyxjiPyPxyxEE
PEeUPji

UP
PU

22

Example: Visibility Graph

A

Edges for the node A being tested
and discarded.

Visibility Graph: Red segments run
between polygons. Green
segments mark the polygons’
borders.

23

Expansion with Start- and Target-Nodes
• visibility graph can be pre-calculated for static environments
• mobile objects must be integrated into the graph before calculation
• insert start S and taget Z as point polygons
• connect the new nodes to with all edges unless an intersection with a

polygon occurs

A
B

24

Dijkstra
Used Data Structures:

• PriorityQueue Q (Contains paths sorted descending by cost)
• cost table T (contains cost for the currently best path for all visited nodes)

Pseudo-Code:
FUNCTION Path shortestPath(Node start, Node target)

Q.insert(new Path(start,0))
WHILE(Q.notIsEmpty())

Path aktPath = Q.getFirst()
IF aktPath.last() == target THEN //result found

return aktPath
ELSE

FOR Node n in aktPath.last().nachfolger() DO //extending of current path
Path newPath = aktPath.extend(n)
IF newPath.cost()<T.get(newPath.last()) THEN //update if optimal for now

T.update(newPath.last,newPath.cost)
Q.insert(newPath,newPath.cost)

ENDIF
ENDDO

ENDIF
ENDWHILE
RETURN NULL //there is no path

ENDFUNCTION

25

A*-Search
• Dijkstra’s algorithm contains no information of the

direction to the target
=> expansion of the search into all directions until

the target is found
• But indications exist for the direction the search

should head
• A*-Search formalizes these “indications” into an

optimistic forward estimation:
h(n, target) for a node n

• h(n,target) indicates a lower bound for the
minimum cost to reach the target

• improves the order of the search through sorting
the priority queue by minimal total cost to target

• allows to prune path P as soon as it’s costs plus the
heuristic are greater than the best result up to now:

P.cost()+h(pfad1.last(),target) > bestPath.cost()

• standard heuristic to estimate the route:
Euclidian distance between actual position and
target position

Solution

Search area

Search Area
Solution

Heuristic

26

Pseudo Code: A*-Search
Pseudo Code:

FUNCTION Path shortestPath(Node start, Node target)
Q.insert(new Path(start),0)
WHILE(Q.notIsEmpty())

Path aktPath = Q.getFirst()
IF aktPath.last() == target THEN //found result

return aktPath
ELSE

FOR Node n in aktPath.last().successor() DO //expanding the current path
Path newPath = aktPath.extend(n)
IF newPath.cost()<T.get(newPath.last()) THEN //update if optimal so far

T.update(newPath.last, newPath.cost())
Q.insert(newPath, newPath.cost() +h(newPath.getLast(), target))

ENDIF
ENDDO

ENDIF
ENDWHILE
RETURN NULL //there is no path

ENDFUNCTION

27

Visibility Graph for extended objects
• MOBs usually have a spatial expansion:

Circle or Polygon
• Visibility graph is only feasible for point-

routing
• Adjusting the visibility graph regarding

the spatial expansion of the object:
Polygons are being expanded by the
spatial extension (Minkowski Sum)

Problem with this solution:
• For circular expansion: Circles have an

infinite number of corners
=> Visibility graph is not derivable

• For Polygon-Environment: object rotation
should be considered
=> Every rotation requires a separate
extension

Ziel

Start

Ziel

Start

28

Visibility Graph for extended Objects
Solution Approach:
• Polygons are approximated by surface

of revolution
=> Circle

• Circles are approximated by minimal
surrounding polygons (MUP)
=> e.g. hexagon, octagon

• Form Minkowski sum with the MUPs
and derive visibility graph.

Remarks:
• Paths are not optimal
• Passages are considered conservatively
• Curves are taken angular
• MMO should only have a limited

amount of bounding box sizes because
each requires it’s own graph

Goal

Start

Minkowski-Sum in different rotations of the same shape

Double approximation of surface of revolution
and minimal surrounding Hexagon

29

More Pathfinding Methods
Other Methods:
• approximation polygons through

polygons with less corners
• hierarchic Routing for longer routes
• precalculate and store shortest paths

in dedicated data structures
• grid based graphs: overlay the map

with a grid and route over cell
centers.

Conclusion:
Routing is an old but still active field
of research in computer sciences.

A

B

A

B

30

Antagonistic Player Behavior

How is an AI capable to react to a player’s behavior?
• AI reads the current state of the player and derives a matched action.
• select a matching action with

=> Precalculating/Estimating an action’s result
=> Evaluation of expected results with value functions/heuristics

Example: Option 1: Monster M hits player S
=> player S has 900 HP remaining

Option 2: Monster M flees from S
=> Player S has 1000 HP remaining

Evaluation: Option 1 is preferred, since the enemy looses 100 HP.

31

Antagonistic Search

Problem: Simple model does not take the opponent acting to
increase his own advantage into account.

in the example:
M attacks S and hits M for 100 HP
⇒ S hits M for 1000 HP
result: S has 900 HP and M is dead

antagonistic search from game theory offers a formal
framework for reactive behavior.
Base Case:
turn based game: Action can be sequenced
=> finite number of alternative actions for every turn

32

Antagonistic Search
Given:
• GSi: score before move i. players: S1 and S2.
• actions of player Sj for GS :action(Sj , GSi) = {A1, …, Ak)
• valuation function H: GS → IR (the higher, the better for player S)
Search-Tree:
• complete tree: contains all possible courses of play (normally to big)
• incomplete search: search GS maximizing H(GS) for

h turns
(1 turn = 2 half-turns = S1 and S2 act once)

• action of S1 depends on S2’s reaction

GS0

GS1,1 GS1,2 GS1,3

action(S1 , GS0)

action(S2 , GS1,1) action(S2 , GS1,2) action(S2, GS1,3)

GS2,3GS2,3GS2,3 GS2,5GS2,4 GS2,6 GS2,7

action(S1 , GS2,3)

GS3,3GS3,2GS3,1

action(S1 , GS2,3)

GS3,5GS3,4

action(S1 , GS33)

GS3,3GS3,2GS3,7

…. …. ….….

33

Min-Max Search in antagonistic Search Trees
• rate a move A to maximize H(GS) after S2’s reaction (tries to minimize H).
• Search depth:

• fixed depths
⇒ time may vary and is hard to estimate
⇒ turbulent positions make pruning of some branches unfavorable
• iterative deepening:

- multiple calculations with increasing search depth
- on time-out: abort and use of last complete calculation

(for each level the total cost doubles)
• turbulent positions: single branches are being expanded if leaves are turbulent.

3

552 1 6 103Min-Step (S2)

Max-Step (S1) 2 1 3

34

Alpha-Beta Pruning
Idea: If a move already exists, that is evaluated with α even after a counter

reaction, all branches creating a value less than α can be pruned.
• α: S1 reaches at least α on this sub-tree (H(GS) > α)
• β: S2 reaches at most β on this sub-tree (H(GS) < β)

Algorithm:
• traverse search tree with depth-first search and fill inner nodes on the way

back to the last branching
• for calculating inner nodes:

if β < α then
• prune the remaining sub-tree
• set β-value for the sub-tree if it’s root is a min-node
• set α -value for the sub-tree if it’s root is a max-node

else set β-value to the minimum of min-nodes
set α-value to the maximum of max-nodes

35

Alpha-Beta Pruning
Idea: If a move already exists, that is evaluated with α even after a counter

reaction, all branches creating a value less than α can be cut.
• α: S1 reaches at least α on this sub-tree (H(GS) > α)
• β: S2 reaches at most β on this sub-tree (H(GS) < β)

554

4

α= 4 4

554

4

1262

4

554

4

2 65

5

α = 4

β = 2 β = 5

α = 5

β = 4

4

4

4

554

4

2 5

5

α = 4

3

1

1

α = 3

3

3

β = 1

β = 3

β < α

β < α

β < α

β < α

β = 4

36

Usability for general Games
expansion to more general games can be reached by adjusting the evaluation
function:
• probabilistic games: maximize the expected value (e.g. Backgammon)
• incomplete information (e.g. Hearth Stone, …)

expansion to several players:
• min-nodes consider all players’ actions

(large number of player reactions might generate a large state space)

ceasing time synchronization:
• possible in principle, but the number of possible state transitions generally

grows exponentially
• hard to calculate without restricting the search area

conclusion: The basic idea is applicable to any game, but in practice the state
space and the state transitions strongly increases with a large number of
players, possible temporal sequences and available actions.

37

Learning Goals

• modeling decision processes
• rules based policies
• state machines
• typical tasks for AI-Engines
• pathfinding in open environments
• pathfinding with expanded objects
• antagonistic Search
• Min-Max Search
• Alpha-Beta Pruning

38

Literature

• Nathan R. Sturtevant
Memory-Efficient Abstractions for Pathfinding
In Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE), 2007.

• Nathan R. Sturtevant, Michael Buro
Partial pathfinding using map abstraction and refinement
In Proceedings of the 20th national Conference on Artificial
Intelligence, 2005.

• Joseph O’Rourke:
Computational Geometry in C.
2nd Edition, Cambridge University Press, 1998.

• S. Russel, P. Norvig: Aritificial Intelligence: a modern approach,
Pearson, 2016 (third edition)

	Chapter 10: Artificial Intelligence
	Foliennummer 2
	Formal Decision Processing
	Formal Decision Processing
	Formal Decision Processing
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38

