Skript zur Vorlesung Managing and Mining Multiplayer Online Games im Sommersemester 2016

Kapitel 9:Räumliche Verhaltensmodelle

Skript © 2012 Matthias Schubert

http://www.dbs.ifi.lmu.de/cms/VO_Managing_Massive_Multiplayer_Online_Games

Kapitelüberblick

- Spatial Data Mining in Games
- Visual Analytics und Heat Maps
- Spatial Prediction
- Spatial Outliers
- Trajektorien Darstellungen und Vergleiche
- Mustersuche in Trajektorien

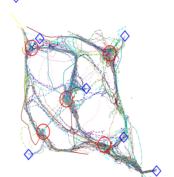
Spatial Data Mining und Spiele

- Viele Spiele finden in einer virtuellen 2D-/3D- Welt statt.
- Bewegung und Positionierung ist häufig ein wichtiger Teil des Game Plays.
- Aufbau der Spielwelt ist relevant für das Balancing.
- Analyse von räumlichen und räumlich-zeitlichen Abläufen wird unter dem Begriff Spatial Data Mining zusammengefasst.



Aufgaben Spatial Game Analytics

- Finde Exploitation-Spots
- Extraktion von Spielzügen und Bewegungsstrategien
- Erkennen von Encountern (Open PVP)
- Sub-Team Erkennung
- Dynamisches Anpassen von Respawn-Raten
- Erkennen von Bots und Multi-Boxing
- Erkennen von Bewegungs- und Teleportations-Hacks
- ⇒ Suche bestimmte Orte (Heatmaps, Spatial Prediction, Spatial Outlier)
- ⇒ Suche nach Bewegungsmustern (Trajectory Mining)

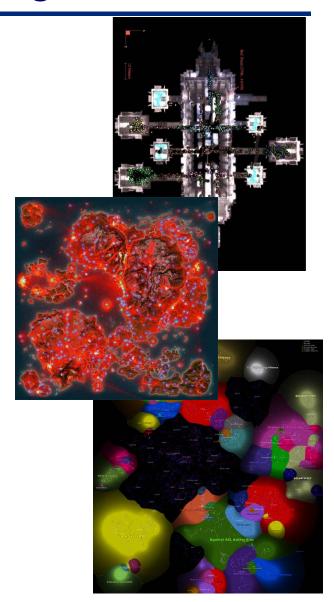


Räumliche Daten und Visualisierung

• Räumliche Daten bestehen aus Objektbeschreibung und Position.

(Beispiel: Marine, 43,56)

- Um besondere Orte zu finden, werden die Objektbeschreibungen bzgl. der Position aggregiert.
 (z.B. Anzahl der Kills an einer Position, Spawn-Häufigkeit eines Monsters an einem Ort)
- Räumliche Kontinuität: i.d.R. geht man davon aus, dass sich benachbarte Positionen ähnlich verhalten.
- ⇒ Darstellung von aggregierten Informationen über 2D Histogramme (Bin Counting)
- ⇒ Darstellung der räumlichen Kontinuität über Glättungsansätze (Kerndichteschätzer)

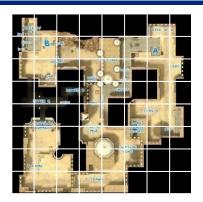


Heat Maps

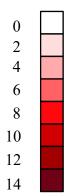
- Visualisierung der Verteilung der Ereignisse über die X-,Y- Koordinaten einer Karte.
- Darstellung der Verteilung als 2D-Dichteverteilung.
- Die Höhe der Bins wird durch Farbe kodiert.

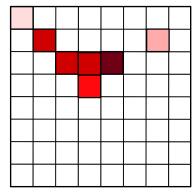
Einfacher Algorithmus: Bin Counting

- 1. Lege uni-distantes Grid über die Karte
- 2. Für jedes Ereignis
 - 1. Bestimme die Gridzelle
 - 2. Erhöhe Zähler der Gridzelle um 1
- 3. Zeichne das Grid und färbe jede Zelle mit einer Farbe, die der Zahl in der Zelle entspricht.



3						
	10				5	
		11	11	14		
			9			





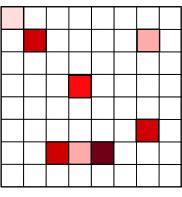
Heat Maps

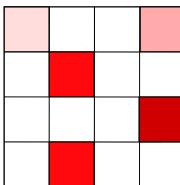
Probleme bei Bin Counting:

- Einstellung der Grid-Größe:
 - zu klein: zerrissene Darstellung, wenige dichte Bereiche
 - zu groß: grobe Darstellung, wenig Unterscheidung
- Position des Grids beeinflusst Ergebnis
- räumliche Kontinuität kann schlecht erkennbar sein

Abhilfe: Glätten der Kurve mit Kerndichteschätzung Abschätzung der Objektdichte über Summe von Kernfunktionen

- ⇒ Kontinuierliche und geglättete Dichtefunktion
- ⇒ Rasterung der Daten erst beim Zeichnen



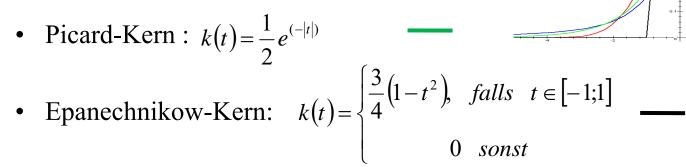


Kerndichteschätzer

- Verfahren zur Abschätzung einer kontinuierlichen Dichtefunktion aus einer Samplemenge *X*.
- Betrachte Dichte p(t) als Mixture-Model von X Verteilungen, die alle mit der Kernfunktion k(t) verteilt sind:

 $p(x) = \frac{1}{|X|} \sum_{t \in Y} k(t - x)$

- Gängige Kernfunktion:
 - Gaußkern: $k(t) = \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{1}{2}t^2\right)}$
 - Cauchy-Kern: $k(t) = \frac{1}{\pi(1+t^2)}$



Heatmaps mit Kerndichteschätzern

- Kerne im 2D-Raum unter der Annahme $p(t) = \left(\frac{1}{|X|} \sum_{x \in X} k(t_1 x_1)\right) \cdot \left(\frac{1}{|X|} \sum_{x \in X} k(t_2 x_2)\right)$ unabhängiger Dimensionen:
- Jedes Bin entspricht einem Pixel
- Für jedes Pixel P wird p(m) am Pixelmittelpunkt m berechnet
- Zur effizienten Berechnung:

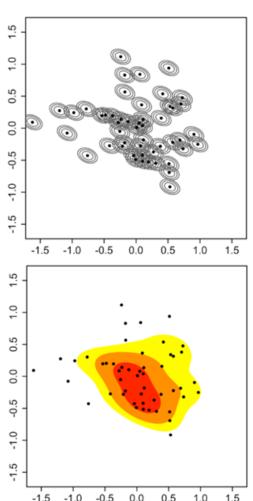
Gehe über alle Punkte x:

Gehe über alle Pixel *p*:

Gehe über beide Dimensionen:

Erhöhe den Wert von p

um $k(x-p_m)$ mit p_m Mittelpunkt von p



Spatial Data Mining

- Spezialbereich des Data Minings, der sich mit räumlichen Objekten beschäftigt.
- Objekt O besteht aus einer räumlichen Komponente $p \in IR^2/IR^3$ und einer Objektbeschreibung $v \in F$. (F ist ein beliebiger Feature-Raum)
- Spezielle Tasks im Spatial Data Mining:
 - **Spatial Outlier Detection**: Finde Orte, bei denen die Feature-Beschreibung deutlich von der Beschreibung der räumlich nahen Objekte abweicht.
 - (Beispiel: Exploitation Spots, bei denen man nicht getroffen werden kann.)
 - **Spatial Prediction**: Vorhersage von Orten, an denen bestimmte Phänomene häufig auftreten.
 - (Beispiel: Berechne die Wahrscheinlichkeit, ob an einer bestimmten Stelle, ein bestimmtes Verhalten beobachtet werden kann.)
 - **Spatial Clustering**: Clustering, das sowohl die räumliche Nähe als auch die Ähnlichkeit im Feature-Raum verwendet, um Cluster zu bilden bzw. voneinander abzugrenzen. (Beispiel: Werden beliebige Aktivitäten häufig an bestimmten Stellen der Karte unternommen.)
 - **Spatial Rule Mining:** Ableiten von Assoziationsregeln auf Basis häufiger räumlicher Muster. (Beispiel: 80% der Städte, die innerhalb von 50 km der Siedlung eines anderen Spielers gebaut werden, überleben nicht bis zum Ende des Spiels.)

Spatial Prediction

- Supervised Learning auf räumlichen Daten.
- Spatial Auto Regression (SAR): Erweitern von Regressionsmodellen zur Berücksichtigung der Zielwerte naher Objekte (hier Matrixschreibweise):

$$y = \rho \cdot W \cdot y + X \cdot \beta + \varepsilon$$

- y: Vektor der Zielwerte
- W: Matrix, die die räumliche Nähe der Objekte darstellt
- X: Datenmatrix, die aus den Trainingsvektoren gebildet wird
- ε: Normalverteilter Fehler/Rauschen
- ρ: Gewichtungsfaktor für räumliche Komponente
- β: Gewichtungsvektor für inhaltliche Komponente
- Umformung für die Berechnung: $(1 \rho \cdot W)\vec{y} = X\beta + \varepsilon$ $y = (1 - \rho \cdot W)^{-1}X\beta + (1 - \rho \cdot W)^{-1}\varepsilon$
- $(1-\rho \cdot W)^{-1}$ kann als räumliche Glättung des Feature-Raums aufgefasst werden.
- Bestimmen von ρ und β mit Maximum Liklihood Schätzern oder Markov-Chain-Monte-Carlo Abschätzung.

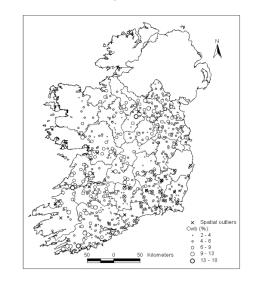
Spatial Outlier Detection

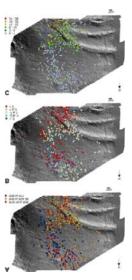
Gegeben: Eine Menge DB von räumlichen Objekte O = (p,v).

Gesucht: Objekte, die in ihrer räumlichen Umgebung ungewöhnlich sind.

Allgemeines Vorgehen:

- 1. Bestimme für jedes Objekt *O* eine räumliche Nachbarschaft *N*. (z.B. *N* besteht aus den räumlich k-nächsten Nachbarn von *O*).
- 2. Vergleiche die Feature-Beschreibungen *O.v* mit der Verteilung der Feature-Beschreibungen in *N*.





Spatial Outlier Detection

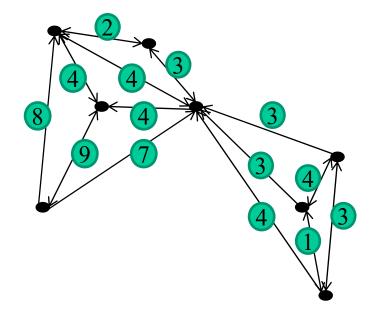
Point Outlier Detection (POD):

1. Aufstellen eines Nearest Neighbor Graphen G(DB,E) auf den räumlichen Positionen.

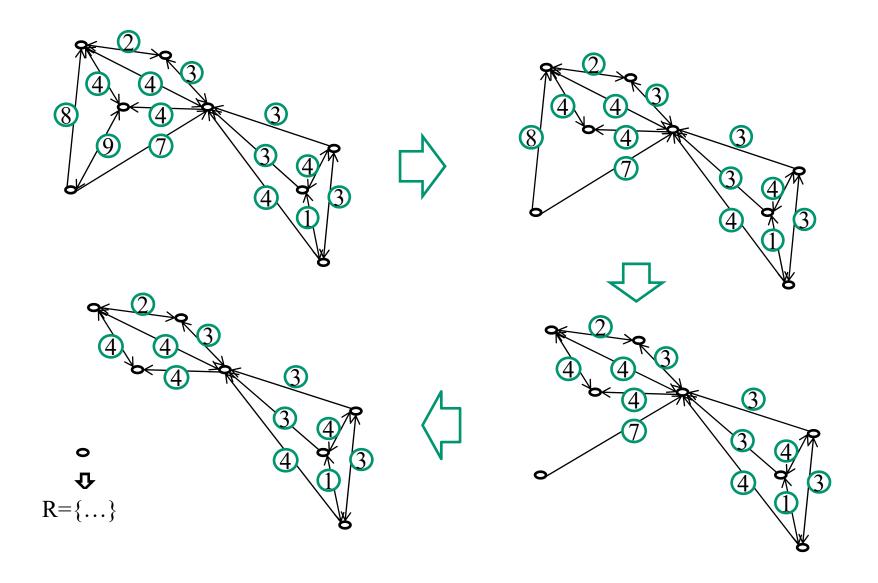
$$\begin{aligned} & \text{E:=} \left\{ (o_i, o_j) \middle| \ o_i, o_j \in DB \land o_j \in NN_k(o_i) \right\} \\ & \textit{Gewichtungsfunktion:} \\ & w(o_i, o_i) = || \ o_i \ . v \ -o_i \ . v || \end{aligned}$$

- 2. Sortiere E absteigend nach $w(o_i, o_j)$
- 3. Solange |R| < m (noch keine m Outlier gefunden)
 - 1. Entferne die Kante (o_i, o_j) mit max. Gewicht $w(o_i, o_i)$
 - 2. Falls o_i jetzt isoliert ist

Füge o_i in das Ergebnis R ein

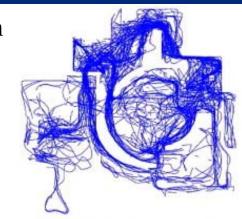


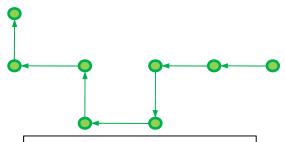
Beispiel POD



Trajektorien

- Trajektorien beschreiben eine Bewegung durch den Raum (Zeitreihen über räumliche Positionen)
- Räumliche Trajektorie: $Q=(x_1, ..., x_l) \in IR^2 \times ... \times IR^2$ heißt räumliche Trajektorie der Länge l über IR^2 .
- **Räumlich-Zeitliche Trajektorie**: Sei T eine Domäne zur Darstellung der Zeit, dann heißt $Q=((x_1, t_1),..., (x_l, t_l)) \in (IR^2 \times T) \times ... \times (IR^2 \times T)$ räumlich-zeitliche Trajektorie der Länge l über IR^2 .
- Alternativ können Trajektorien auch relativ zu einer Startposition beschrieben werden.
- Bewegung ist kontinuierlich: Um einen kontinuierlichen Pfad zu erhalten, wird i.d.R. angenommen, dass die Bewegung zwischen 2 Positionen linear und mit konstanter Geschwindigkeit zurückgelegt wird.





go, go, turn left, go, turn right, go, turn right, go, turn left, go, turn right, go

Distanzmaße für Trajektorien

• Punkt zu Trajektorie: Gegeben $p \in IR^2$ und Trajektorie

$$Q=((x_1,t_1), ..., (x_l,t_l)): D(p,Q) = \min_{(x,t)\in Q} d(p,x)$$

• Trajektorie zu Trajektorie: Gegeben $Q=((x_1,t_1), ..., (x_l,t_l))$

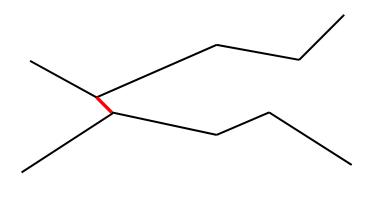
und
$$P = ((y_l, t_l), ..., (y_l, t_l))$$
:

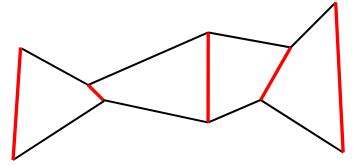
Closest Pair Distanz:

$$CPD(Q, P) = \min_{(x_i, t_i) \in Q, (y_j, t_j') \in Q} d(x_i, y_j)$$

Sum-of-Pairs:

$$SPD(Q, P) = \sum_{i=1}^{n} d(x_i, y_i)$$



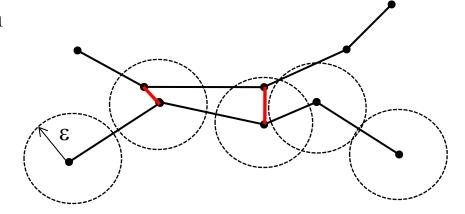


Abstandsmaße für Trajektorien

- bei unterschiedlicher Länge: DTW (Siehe Kapitel 8) Aber: DTW ist anfällig für Ausreißer.
- Längste gemeinsame Subsequenz (Ähnlichkeitsmaß!) LCSS (Longest Common SubSequenz):

$$LCSS(Q, P) = \begin{cases} 0, falls & n = 0 \lor m = 0 \\ 1 + LCSS(Rest(Q), Rest(P)), falls & d(Head(Q), Head(P)) \le \varepsilon \land |n - m| < \delta \\ \max(LCSS(Rest(Q), P), LCSS(Q, Rest(P)), sonst \end{cases}$$

- ϵ : Grenzwert für Positionsmatching, δ max. Verschiebung
- Berechnung durch Rekursion

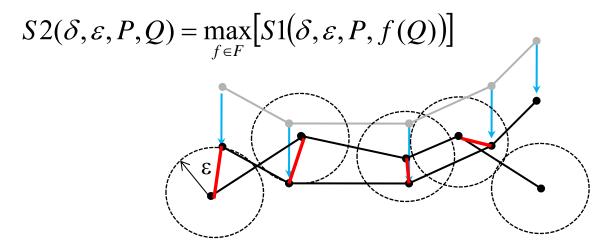


LCSS Ähnlichkeit

• LCSS(P,Q) zählt bis jetzt nur die Länge der größten gemeinsamen Subsequenz, ist aber nicht normiert:

$$S1(\delta, \varepsilon, P, Q) = \frac{LCSS(P, Q)}{\min(|P|, |Q|)}$$

• Ähnlichkeit berücksichtigt noch nicht die Translation von Trajektorien (Translation: Verschiebung aller Positionen um einen festen Vektor): Sei F die Menge aller Translationen und $f(Q) \in F$ eine Translation:



Kompression von Trajektorien

Eigenschaften von Trajektorien in Spielen:

- hohe Auflösung (ca. 20-30 Punkte/s)
- keine Positionsmessfehler (Position ist exakt hinterlegt)
- Geschwindigkeit ist häufig fest abgestuft und Bewegung ist häufig linear.

Probleme: Auflösung ist häufig zu hoch und redundant

- Speicherbedarf ist extrem hoch
- Vergleiche werden sehr teuer (alle DTW basierten Maße sind quadratisch)

Lösungsansatz: Reduktion der Wegpunkte

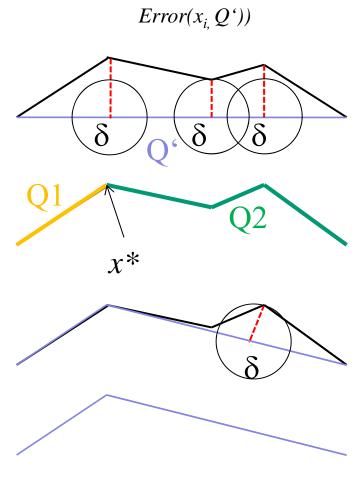
- ⇒ Kompression durch Weglassen von Wegpunkten
- ⇒ Gute Verfahren minimieren Approximationsfehler

Douglas-Peuker Algorithmus

Gegeben: Eine Trajektorie $Q=((x_1,t_1), ..., (x_l,t_l))$ der Länge 1.

Gesucht: Q' mit | Q' | << l und Approximationsfehler ist kleiner als δ .

Algorithmus:



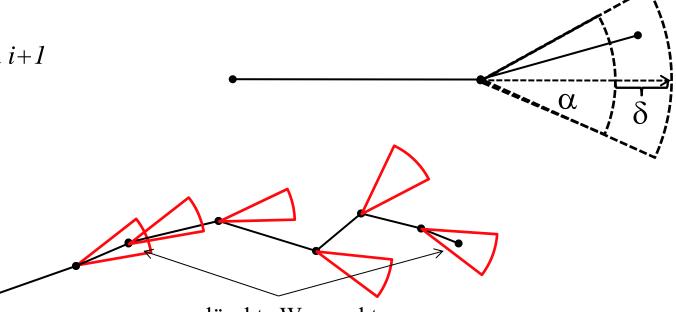
Kompression mit Geschwindigkeit und Richtung

- Betrachte letzte 2 Wegpunkte q_{i-2} , q_{i-1} und berechne Bewegungsrichtung $d_i = \frac{q_{i-2} q_{i-1}}{\|q_{i-2} q_{i-1}\|}$ und Geschwindigkeit $v_i = \frac{\|q_{i-2} q_{i-1}\|}{t_{i-2} t_{i-1}}$
- Extrapoliere den nächsten Wegepunkt $q_{i-1} + d_i v_i(t_{i+1} t_i)$ und teste: Wenn $/v_i(t_i t_{i-1}) (q_i q_{i-1})/\leq \delta$ und $\frac{\langle d_i, q_i q_{i-1} \rangle}{\|d_i\| \cdot \|q_i q_{i-1}\|} \leq \alpha$

lösche q_i

sonst

gehe zu i+1



gelöschte Wegpunkte

Mustersuche in Trajektorien

- Trajektorien können wie andere Objekte auch mittels distanzbasiertem Data Mining (z.B. OPTICs) und entsprechenden Distanzmaßen (LCSS) analysiert werden.
- Die resultierenden Muster bestehen aber aus global ähnlichen Trajektorien.
- Viele interessante Muster auf Trajektorien basieren aber nur auf einem verhältnismäßig kleinen Teil der Trajektorie.
- Interessante Muster haben häufig bestimmte räumliche Nebenbedingungen.
- => Spezielle Mustersuche für Trajektorien

Kontinuierliche Flocks

Idee: Finde Objekte die für eine gewisse Zeit einen gemeinsamen Weg hatten.

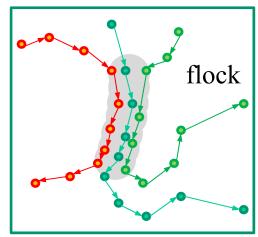
Beispiel: Subteams in Spielen, Convoys, Verbände, ...

Definition: *Kontinuierlicher* (*m*,*k*,*r*)-*Flock*

Sei DB eine Menge von Trajektorien der Länge l, ein Flock im Zeitinterval $I=[t_i,t_j]$ mit $j-i+1\geq k$ besteht aus mindestens m Objekten, so dass es für jeden Zeitpunkt in I eine Scheibe mit Radius r gibt, die alle m Objekte umschließt.

Bemerkung: Berechnung des Flocks mit der längsten Dauer und Berechnung des Flocks mit dem größten Subset sind NP-harte Probleme.

=> Lösungen sind aufwändig oder nur approximativ



Flocks mit diskreter Zeit

Definition: Diskreter(m,k,r)-Flock

Sei DB eine Menge von Trajektorien der Länge l, ein Flock im $I=[t_i,t_j]$ mit $j-i+l\geq k$ besteht aus mindestens m Objekten, so dass es für jeden diskreten Zeitpunkt t_l mit $i\leq l\leq j$ eine Scheibe mit Radius r existiert, die alle m Objekte umschließt.

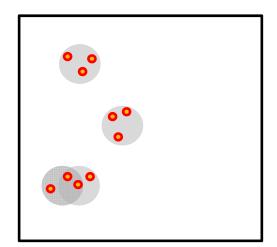
- Lemma: Wenn sich die Objekte mit konstanter Geschwindigkeit und auf einer direkten Linie zwischen den Wegpunkten bewegen, sind diskrete und kontinuierliche Flocks äquivalent.
- **Vorteil**: Man kann aus dem kontinuierlichen Problem ein diskretes machen. **Aber**: Die Komplexität bleibt und steckt in der Kombinatorik der möglichen Teilmengen. Mögliche Anzahl von Flocks mit *m* Elementen:

$$\binom{\mid DB \mid}{m} \cdot (l-k+1)$$

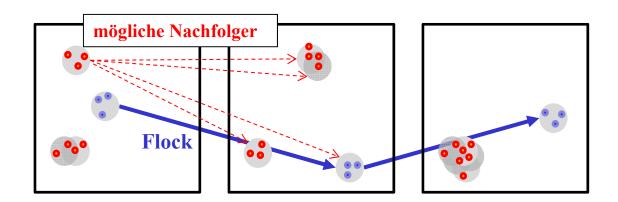
Suche nach Flocks

Vorgehen umfasst 2 Teilaufgaben:

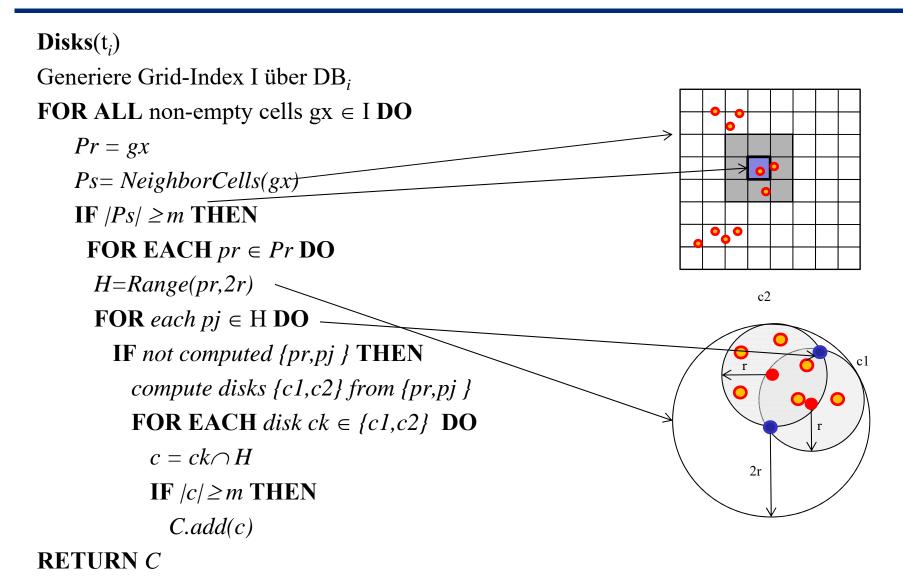
- 1. Finde alle Scheiben mit Radius r, die mindestens m Punkte zum Zeitpunkt t_i enthalten.
 - => Sequenz aus Teilmengen von DB
 - => Eine Trajektorie kann auch in mehreren Teilmengen enthalten ein.



2. Finde Sequenz $(S(t_i), ..., S(t_j))$ von Scheiben $S(t_l)$ für die Zeitpunkte t_l mit $i \le l \le j$ für die gilt:



Finden aller Scheiben zum Zeitpunkt t



Finden von (m,k,r)-Flocks

Continuous Refinement Evaluation (CRE)

```
CRE(DB,k)
FOR EACH point in time t, DO
  L: Trajectories in time interval t_{i-k} to t_i
   C^{I} = Disks(L[t_{i-k}]) // alle Scheiben an denen Trajektorien aus L zu t_{i-k} beteiligt sind
  F = \{\} // Ergebnis
  FOR EACH c1 \in C^1 DO // Für jede Startscheibe
    L'[1] = trajectories in c1
    F^{1} = c1, F^{t} = \{\}
     FOR t = 2 to k DO // Für die nächsten k-1 Zeitpunkte
        C^t = Disks(L'[t])
        F^t = \{\}
        FOR EACH c \in C^t DO // Für alle Scheiben zum Zeitpunkt t
           FOR EACH f \in F^{t-1} DO // Für alle bisher gültigen Flocks
              IF |c \cap f| \ge m THEN
                 F^t = F^t \cup \{c \cap f\} // Erweitern des Flocks um einen Zeitpunkt
        IF |F^t| = 0 THEN
           BREAK
     F=F\cup F^t
   RETURN F
```

Meets (Encounter)

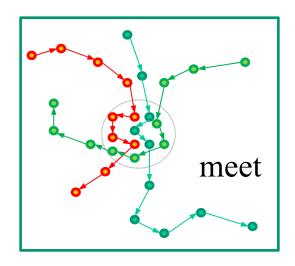
Idee: Finde Objekte, die sich für eine gewisse Zeit zusammen an einem Ort aufhalten.

Beispiel: Encounter, Kämpfe.

Definition: (m,k,r)-Meet

Sei DB eine Menge von Trajektorien der Länge l, ein Meet im Zeitinterval $I=[t_i,t_j]$ mit $j-i+1\geq k$ besteht aus mindestens m Objekten, so dass für jeden Zeitpunkt in I alle m Objekte in einer Scheibe mit Radius r und Mittelpunkt M liegen.

Bemerkung: Die Berechnung von Meets ist einfacher als die Berechnung von Flocks, da bei 2 aufeinanderfolgenden Zeitpunkten nur die Positionen der Scheiben aber nicht deren Trajektorien untersucht werden müssen.



Encounter Detection

Idea: To find out where a team succeeded /failed and find the decisive moments in a game.

- In Dota2 defeating enemy heroes grants the biggest advantage in gold/XP
- Find situations where this was possible or succeeded
- => Encounters

Encounter characteristics

- Encounters represent only a portion of the game
- Encounters can happen simultaneously
- Often only sub teams are involved in encounters

Idea: Fights happen when opponents can influence each other.

- opponents have to be in fighting range
- each hero unit might have an individual attack range
- heroes can support (e.g. heal) a friendly unit

Which kind of information is necessary?

- Spatial position and unit type for each controlled hero unit
- Attack and support ranges for all units types

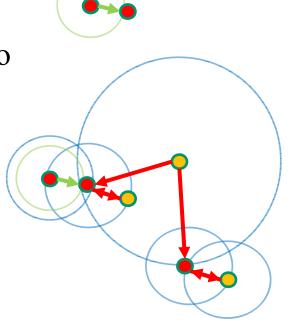
Encounter Situations

• *Combat link*: 2 hero units from different teams A and B. Either A can attack B or vice versa

• *Support lin*k: 2 hero units from the same team A and B. Either A can support B or vice versa

• Each hero type has individual *attack and support ranges* (Ranges are mean values plus to standard deviations)

• *Component Graph*: Connected Graph build by Combat/support Links



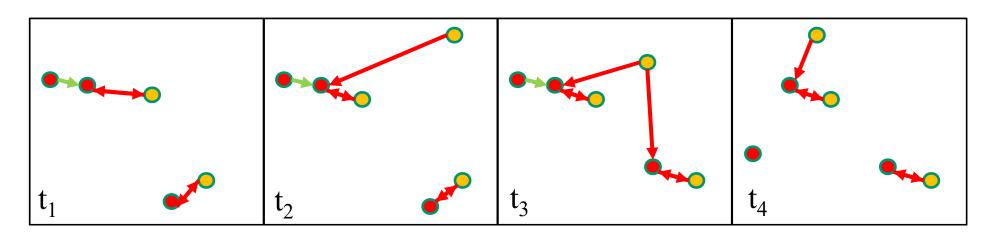
Encounter Situations

Formally...

Definition: Combat Component

- units U and the union $E_d = CL \cup SL$ of combat links CL and support links SL between the units in U.
- $E_u = \{(u_i, u_j) | (u_i, u_j) \in E_d \lor (u_j, u_i) \in E_d \}$
- Situation graph $G(U, E_u)$.
- Combat component C: Connected subgraph $G(\overline{U}, \overline{E})$ of $G(U, E_u)$ where $\overline{U} \subseteq U, \overline{E} \subseteq \overline{U} \times \overline{U}$ and $\forall u_1, u_l \in \overline{U} : \exists (u_1, u_2, \dots u_l)$ where $i \in \{1, \dots, l\} : (u_i, u_{i+1}) \in \overline{E}$ and $\exists u_i, u_i \in \overline{U} : u_1 . team \neq u_2 . team$.

- Component Graphs describe an Encounter at tick t
- An encounter usually lasts multiple consecutive ticks
- Hero Units can join encounters
- Hero Units might be defeated or leave
- Encounters can split
- Encounters can join



Formally...

Definition: Successor

Given a set of components $CS_t = \{ C_{1,t}, \dots, C_{l,t} \}$ describing encounter E at tick t. Let τ be a timeout threshold. A component $C_{t+\Delta t}$ is a successor of CS_t denoted as $CS_t \to C_{t+\Delta t}$ if the following conditions hold:

- $\Delta t \leq \tau$
- $\exists u_1, u_2 \in C_{t+\Delta t}: \exists C_{i,t} \in CS_t: u_1 \in C_{i,t} \land C_{j,t} \in CS_t: u_2 \in C_{j,t} \land u_1.team \neq u_2.team$

Formally....

Definition: Encounter

An encounter is a sequence $(CS_0,...,CS_{,l})$ of lists of components CS_i where the following condition holds: $\forall C_{i,t} \in CS_t : CS_{t-1} \rightarrow C_{i,t}$ with $t \in \{1,...,l\}$.

Encounter Detection

What is the input data?

- hero type (combat range, support range), team
- time series of position updates (one at a time)

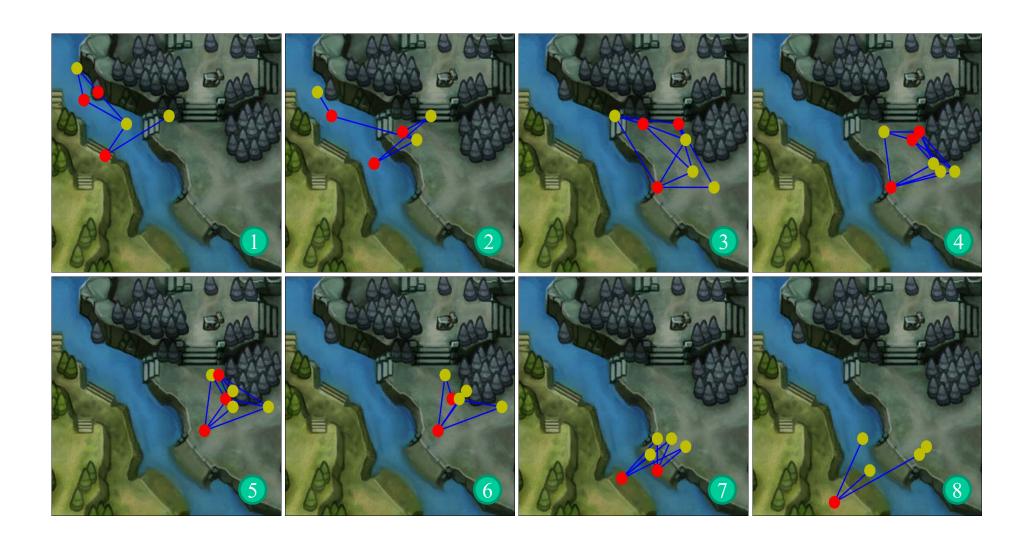
Algorithm:

- Initialize hero information
- Stream over position updates and update distances
- For each player movement process the impact to the current component graphs
- Keep lists of open encounters
- Move encounters to a closed set if they time out

The Algorithms

```
Encounter Detection (position stream)
While position stream.hasNext():
   component = build_component(unit,distance_table)
    If component is combat component:
       compute predecessors(component, open encounters)
       If predecessors.size() == 0:
         open encounters.add(new Encounter(component)
       If predecessors.size() == 1:
         predecessors.get(1).update(component)
       If predecessors.size() >1:
         open encounters.join(predecessors, component)
       For encounter in open encouters:
         If encounter has timeout:
           move encounter from open_encounter to closed_encounters
For encounter in open encouters:
        move encounter from open encounter to closed encounters
return closed encounters
```

An Example Encounter (Detailed View)



Lernziele

- Anwendungen f
 ür Spatial Game Analytics
- Heat Maps mit Bin Counting und Kerndichteschätzer
- Tasks im Spatial Data Mining
- Spatial Prediction mit Autoregression
- Spatial Outlier Detection mit POD
- Trajektorien, relative und absolute Trajektorien
- Vergleiche zwischen Trajektorien (LCSS)
- Kompression von Trajektorien
- Mustersuche in Trajektorien
 - Definition von Flocks
 - Berechnung von Flocks
 - Definition von Meets
 - Encounter Detection

Literatur

- Marcos R. Vieira, Petko Bakalov, and Vassilis J. Tsotras. 2009. *On-line discovery of flock patterns in spatio-temporal data*. In *Proc of the 17tthACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems* (GIS '09). ACM, New York, NY, USA, 286-295.
- Yu Zheng, Xiaofang Zhou: Computing with Spatial Trajectories, Springer, 2011.
- Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. *Reporting flock patterns*. *Comput. Geom. Theory Appl.* 41, 3 (November 2008), 111-125.
- Anders Drachen, Alessandro Canossa: Evaluating Motion: Spatial User Behavior in Virtual Environments International Journal of Arts and Technology, 4(3): 1--21, 2011.
- H.K. Pao, K.T. Chen, H.C. Chang: **Game Bot Detection via Avatar Trajectory Analysis** Computational Intelligence and AI in Games, IEEE Transactions on, 2(3): 162--175, 2010.
- Jehn-Ruey Jiang, Ching-Chuan Huang, Chung-Hsien Tsai: **Avatar Path Clustering in Networked Virtual Environments** In Proceedings of the 2010 IEEE 16th International Conference on Parallel and Distributed Systems, 2010.
- C. Thurau, C. Bauckhage, G. Sagerer: Learning human-like movement behavior for computer games, In From animals to animats 8: Proceedings of the 8th International Conference on Simulation of Adaptive Behavior, 2004.
- Yufeng Kou, Chang-Tien Lu, Raimundo F. Dos Santos: *Spatial Outlier Detection: A Graph-Based Approach*, 19th IEEE International Conference on Tools with Artificial Intelligence, pp. 281-288, Vol.1 (ICTAI 2007), 2007.
- Shekhar, Shashi and Schrater, Paul and Vatsavai, Ranga Raju and Wu, Wei Li and Chawla, Sanjay. **Spatial Contextual Classification and Prediction Models for Mining Geospatial Data**. *IEEE Transactions on Multimedia*. 4(2):174-188, 2002.