Praktikum Big Data Science
SS 2017

Lecturer: Prof. Dr. Thomas Seidl
Assistants: Julian Busch
 Evgeniy Faerman
 Daniyal Kazempour
 Sebastian Schmoll
Agenda

- Lab Organization
- Introduction
 - Data Science
 - Big Data
- Lab Goals
- Time Schedule
- Next Week
- References
- Topics
The lab is offered for the first time as part of the ZD.B Innovation Lab Big Data Science\(^1\), coordinated by the chairs of

- Prof. Dr. Bernd Bischl
 - http://www.compstat.statistik.uni-muenchen.de/
- Prof. Dr. Dieter Kranzlmüller
 - http://www.nm.ifi.lmu.de
- Prof. Dr. Thomas Seidl
 - http://www.dbs.ifi.lmu.de

The lab will be hosted alternately at the chairs of Prof. Bischl (winter term) and Prof. Seidl (summer term) and is open to master students in Informatics and Statistics programmes.

Technical infrastructure for the lab is provided and maintained by the chair of Prof. Kranzlmüller and the Leibniz-Rechenzentrum (LRZ)

Lab Organization

• Supervisors
 • Julian Busch busch@dbs.ifi.lmu.de Room F 104
 • Evgeniy Faerman faerman@dbs.ifi.lmu.de Room F 109
 • Daniyal Kazempour kazempour@dbs.ifi.lmu.de Room F 106
 • Sebastian Schmoll schmoll@dbs.ifi.lmu.de Room F 110

• Website
 • http://www.dbs.ifi.lmu.de/cms/Praktikum_Big_Data_Science
 • Time schedule and material
 • Check regularly for updates and announcements
• Students will be assigned to groups of 5 students

• Each group can specify preferences for 4 different topics

• The lab is divided into two phases
 • Introductory phase
 • Prepare background, material and tools necessary for the lab
 • Get familiar with your topic and prepare related theory
 • Project phase
 • Solve the tasks specified by your topic
• Each group will work on its topic following an agile scrum-like process
 • The lab is divided into sprints
 • Each sprint starts with a sprint planning session
 • „Daily“ stand-ups (2 appointments per week)
 • Each sprint ends with a sprint review and retropective
 • At the end of each sprint, the group will give a short report in the plenum
 • The group will maintain a documentation of its work

• During the last plenum session, all groups will present their results and provide a demonstration of their developed systems
• For this lab, you will be provided with technical infrastructure
 • Project management
 • GitLab
 • JIRA
 • Compute cloud
 • OpenNebula
 • CIP Room N005/N006 (Baracke)
 • You will have exclusive access on Wednesdays, 14:00 – 18:00
 • The room is equipped with CIP-terminals, beamers and whiteboards

• For GitLab and the CIP-terminals, you will need your CIP-account
 • If you don’t have one, you can register in Room LU113, Mon. - Fri., 14 - 17
 http://www.rz.ifi.lmu.de/FAQ/NeueKennung.faq.html
• Science of managing and analyzing data to generate knowledge

• The Data Science process
 • Requires knowledge from several domains
 • Usually consists of the following steps:
• **Data Science Tasks:**
 • Feature Extraction & Representation Learning
 • Clustering
 • Outlier & Trend Detection
 • Classification & Regression
 • Network Analysis & Graph Learning
 • Search & Retrieval
 • …

https://lvdmaaten.github.io/tsne/#examples

http://snap.stanford.edu/node2vec/
Volume
SCALE OF DATA

40 ZETTABYTES
[= 40,000,000,000,000,000,000,000,000 bytes] of data will be created by 2020, an increase at 300 times from 2005

6 BILLION PEOPLE have cell phones

WORLD POPULATION 7 BILLION

It's estimated that
2.5 QUINTILLION BYTES
[= 2,500,000,000,000,000,000,000,000,000 bytes] of data are created each day

Most companies in the U.S. have at least
100 TERABYTES
[= 100,000,000,000,000 bytes] of data stored

The New York Stock Exchange captures
1 TB OF TRADE INFORMATION during each trading session

Modern cars have close to
100 SENSORS
that monitor items such as fuel level and tire pressure

Velocity
ANALYSIS OF STREAMING DATA

By 2015, it is projected there will be
18.9 BILLION NETWORK CONNECTIONS
– almost 2.5 connections per person on earth

The FOUR V’s of Big Data

Volume: SCALE OF DATA

As of 2011, the global size of data in healthcare was estimated to be
150 EXABYTES
[= 150,000,000,000,000,000,000 bytes]

Variety: DIFFERENT FORMS OF DATA

By 2014, it’s anticipated there will be
420 MILLION WEARABLE WIRELESS HEALTH MONITORS

30 BILLION PIECES OF CONTENT
are shared on Facebook every month

4 BILLION HOURS OF VIDEO
are watched on YouTube each month

400 MILLION TWEETS
are sent per day by about 200 million monthly active users

Velocity: ANALYSIS OF STREAMING DATA

By 2015, 4.4 MILLION IT JOBS
will be created globally to support big data, with 1.9 million in the United States

Veracity: UNCERTAINTY OF DATA

27% OF RESPONDENTS
in one survey were unsure of how much of their data was inaccurate

As of 2011, the global size of data in healthcare was estimated to be
150 EXABYTES
[= 150,000,000,000,000,000,000 bytes]

Praktikum Big Data Science SS 2017

Sources: McKinsey Global Institute, Tween, Cisco, Gartner, EMC, SAS, IBM, Gartner, GDS
• Big data requires large-scale data processing
 • In contrast to traditional grid computing, **MapReduce** offers a high-level programming interface that
 • Implicitly manages data flow
 • Partitions data to conserve network bandwidth
 • Is tolerant to hardware faults
 • **Apache Flink**: Open-source framework for batch and real-time stream processing based on MapReduce
• What will we do in this lab?
 • **Literature study** and familiarization with an active research direction in data science and related approaches
 • **Implementation** of state-of-the-art approaches in **Apache Flink**
 • **Application** of these approaches to a use case on real data
 • **Evaluation** of the approaches w.r.t.
 • Result quality
 • Efficiency
 • Scalability
 • Implementation of a **demo framework** for visualization and exploration
 • Integration of your implemented approaches
 • Presentation of your use case and evaluations
Lab Goals

• What will you learn?

 • Hands-on experience with a Data Science topic
 • Familiarization with a research direction
 • Application of the Data Science process

 • In-depth experience with a big data processing platform
 • Apache Flink

 • Working with a cloud computing system
 • OpenNebula

 • Agile development in a team using Scrum
 • GitLab, JIRA
• In order to successfully complete the lab, you have to
 • Attend all meetings
 • Contribute actively in your group
 • As a guideline: 1 ECTS = 30 hours of work, i.e. during the 12 weeks of the lab course, you are expected to spend ≤ 30 hours per week on the lab
 • The topics are designed such that they can be flexibly rescaled if we observe that the workload is too small/large
 • Note: What counts is *what* you achieve, not how much time you need
 • Implement the backlog items specified by your topic according to their respective definitions of done
 • Maintain your group documentation and provide regular reports
 • Present your final results and your developed system
 • Participate in the discussions of other presentations
Time Schedule

• **Fixed dates**
 • 03.05.Kickoff-Meeting
 • 10.05. Planning of Sprint 0
 • 24.05. End of Sprint 0, Planning of Sprint 1
 • 07.06. End of Sprint 1, Planning of Sprint 2
 • 21.06. End of Sprint 2, Planning of Sprint 3
 • 05.07. End of Sprint 3, Planning of Sprint 4
 • 19.07. End of Sprint 4, Final presentations

• **Introductory phase**

• **Project phase**

• **Times**
 • Wed. 14:00 – 16:00: Scrum Meetings
 • Wed. 16:00 – 17:00: Plenum Session
 • Stand-up meetings on appointment with your supervisor
Homework

• Homework until next week
 • Get together with your group
 • Decide for a group name
 • Decide on a ranking for the topics with your group
 • Send us an e-mail until next Monday, 08.05., 09:00
 • Will will then match the groups to the topics based on your rankings
 • Get familiar with Apache Flink
 • Get an overview and a basic understanding of the framework
 • Complete the Flink training by dataArtisans
 • http://dataartisans.github.io/flink-training/
 • Complete at least the DataStream and DataSet API parts
 • In the end, everyone should have a development environment ready
 • Get familiar with GitLab and JIRA
 • Get familiar with OpenNebula
• Agenda for next week

• Plenum session (14:00 – 15:00)
 • Short introduction to Scrum and how we will implement it in the lab
 • Short introduction to GitLab and JIRA and how we will use it
 • You will get your accounts for JIRA and OpenNebula

• Planning of Sprint 0 (15:00 – 17:00)
 • Setup and configuration of GitLab and JIRA
 • Sprint goals:
 • Theoretical preparation of your topic
 • Setup of a Flink cluster in OpenNebula
• Useful references (not exhaustive)
 • Related lectures at DBS
 • http://www.dbs.ifi.lmu.de/cms/Big_Data_Management_and_Analytics_WS1617
 • http://www.dbs.ifi.lmu.de/cms/Knowledge_Discovery_in_Databases_I_(KDD_I)_16
 • http://www.dbs.ifi.lmu.de/cms/Knowledge_Discovery_in_Databases_II_(KDD_II)_WS1516
 • http://www.dbs.ifi.lmu.de/cms/Maschinelles_Lernen_und_Data_Mining_16
 • Apache Flink
 • https://flink.apache.org/
 • https://mapr.com/introduction-to-apache-flink/
 • https://ci.apache.org/projects/flink/flink-docs-release-1.3/
 • GitLab, JIRA, Scrum
 • https://gitlab.cip.ifi.lmu.de/help
 • https://www.atlassian.com/software/jira
 • https://www.atlassian.com/agile/scrum
 • OpenNebula
 • https://www.lrz.de/services/compute/cloud_en/