

COLLEX - Collecting Labels from Experts

Final Presentation - July 28, 2017 Ahmet Gündüz Gunnar CS Koenig Julia M Moosbauer Franz MJ Pfister

Outline

BD Lab

- Introduction & Background
- Declaration of Transparency
- Technology
- Sprint Overview
- Results
 - Software Engineering
 - Pre-Processing / Cleaning
 - Model Building & Statistical Evaluation
- Key Learnings & Outlook
- Appendix: Sprint Details

Introduction & Background

• Second most common neurodegenerative Disease worldwide

- Typical Symptoms:
 - Bradykinesia
 - Rigor
 - Rest Tremor
 - Gait Disorders
 - Non-motor symptoms: Depression, urinary dysfunction, autonomous disorders

Purpose & Goal - Specific Use Case

- Application in biomedical research: Parkinson's Disease (PD)
- (Objective) analysis of PD Symptoms, e.g. rest tremor, is a key success factor in management of the disease
- Many scientific players to solve that problem
- Giant amounts of motion data
- Problem: No / little amount of labels¹

 \rightarrow Solution: Fitting various machine learning models enabled by collection of large amounts of expert labels and their meta-information (e.g. confidence)

Workflow

Technology

Technology used

Sprint Overview of the Big Data Lab

Sprint 1: Research and Concept Phase, Data Acquisition				
	Sprint 2: Database Setup / Inner Circle / Model Building 1			
		Sprint 3: Data Cleaning & Model Building 2 (Core)		
			Sprint 4: Model Building 3 / Refine Inner Circle	
				Sprint 5: Statistical Evaluation

CW17

CW31

Sprint 1: Research and Concept Phase

Goals:

- Definition of Core Technologies
- Acquisition & Preparation of Clinical Research Data
- Component Structure of Project
- Assignment of team roles and responsibilities
- Discussion with supervisors and implementation of feedback

Achievements:

Sprint 2: Database Setup / Inner Circle / Model Building 1

- Prototype Inner Circle of the System
 - Process Input Data
 - Setup prototype database
 - Decision on API
- Research on Machine Learning
 Technology
- Evaluate Backend-Pipeline
- Implementation of first API version
- Authentication Service

Sprint 3: Data Cleaning & Model Building 2 (Core)

- Connecting the components
- Cleaning Service: Preprocessing of IMU data for Data Science analysis (e.g. read-in, Spectrogram, FFT, Noise reduction, DWT)
- Machine Learning Component: Implement
 Several Machine Learning Models using
 Test Data
 - Random Forests
 - KNN
 - Trees

Sprint 3: Data Cleaning & Model Building 2 (Core)

- Connecting the components
- Cleaning Service: Preprocessing of IMU data for Data Science analysis (e.g. read-in, Spectrogram, FFT, Noise reduction, DWT)
- Machine Learning Component: Implement
 Several Machine Learning Models using
 Test Data
 - Random Forests
 - KNN
 - Trees

Sprint 4: Model Building 3 / Refine Inner Circle

- Fine-tune current machine learning models
- Add machine learning models, e.g.
 - Logistic / Linear / Spline Regression
 - Boosting (AdaBoost, XGBoost)
 - Support Vector Machine (SVM)
 - Multi Layer Perceptron (MLP)
 - Convolutional Neural Networks (CNN)
 - Long Short Term Memory (LSTM)
- Gathering more labels from more experts
- Refine Inner Circle & Iterations

Sprint 5: Wrap-Up / Statistical Evaluation

Goals:

- Refinement of ML techniques
 - parameter tuning
 - development of cost-sensitive approaches
- Statistical Evaluation of
 - Machine Learning Models
 - Label Statistics
 - Rater Statistics
- Write final report and presentation

Confusion Matrix and Statistics

F	Reference							
Prediction	0	1	2	3	4			
0	52	6	0	0	0			
1	14	27	2	1	0			
2	4	1	10	2	0			
3	0	2	0	4	0			
4	1	0	0	0	2			

Overall Statistics

```
Accuracy : 0.7422
95% CI : (0.6574, 0.8154)
No Information Rate : 0.5547
P-Value [Acc > NIR] : 9.076e-06
```

Kappa : 0.595 Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: 0	Class: 1	Class: 2	Class: 3	Class: 4
Sensitivity	0.7324	0.7500	0.83333	0.57143	1.00000
Specificity	0.8947	0.8152	0.93966	0.98347	0.99206
Pos Pred Value	0.8966	0.6136	0.58824	0.66667	0.66667
Neg Pred Value	0.7286	0.8929	0.98198	0.97541	1.00000
Precision	0.8966	0.6136	0.58824	0.66667	0.66667
Recall	0.7324	0.7500	0.83333	0.57143	1.00000
F1	0.8062	0.6750	0.68966	0.61538	0.80000
Prevalence	0.5547	0.2812	0.09375	0.05469	0.01562
Detection Rate	0.4062	0.2109	0.07812	0.03125	0.01562
Detection Prevalence	0.4531	0.3438	0.13281	0.04688	0.02344
Balanced Accuracy	0.8136	0.7826	0.88649	0.77745	0.99603

Results

of the Big Data Lab

Software Engineering

- Spark/Flink vs Pandas
- SQL vs NoSQL
- Django vs Flask

Known: System Overview

Relational Database Model

- Backend of Collex System:
 - Flask vs Django
- Framework for Data Preprocessing
 - Spark/Flink vs numpy/pandas
- Data Model
- API specs
- Storage of IMU data
- Storage of Video data

Overview of Decisions made

Preprocessing / Cleaning

Challenges:

- Missing Data
- Timestamp correction
- IMU data from different watches
- Matching IMU data with Video segment

Label Collection

- Raw Data from 19 Patients with Parkinson's Disease (about 10min each), in total n segments of motion data, equals to about 11.400s of raw motion data
- accounts for 1.275 windows
- Labels from 4 Expert Raters for 254 snippets each, accounts to **1.016** collected labels

Raw IMU Data - Issues

Cleaning & Preprocessing

- Cleaning of Raw Data: Duplicate Timestamps, Transmission Errors, Matching
- Preprocessing of Raw Data (Discrete Wavelet Transform, PSD, Periodogram, Welch Method, Kalman Filtering)

Feature Engineering

- Energy of each segment
- Energy between 3-7 Hz (characteristic frequency band of rest tremor)
- Maximum energy
- Maximum energy between 3-7 Hz
- Power Spectral Density in the frequency bands between 0 and 31 Hz at a 0.5Hz step size

Label Engineering

- 1 Random Rater
- Mean
- Mode
- Aggregation of Agreement
- Cost-Sensitivity

Aggregation Strategies

rounded mean vs raters

Cost-sensitive learning

- Different ways to do cost-sensitive learning
 - Thresholding
 - Direct weighting
 - Rebalancing the data
- Rebalancing is done by rejection resampling
 - with a probability of **1** weight reject the observation
 - otherwise add observation to data set
- How to choose weights?

Weighting strategies

Model Building & **Statistical Evaluation**

Challenges:

- class imbalance
- label noise
- few data

Interrater Agreement

Model	$1 \mathrm{RR}$	1ER	SSD	Mod	Avg	Agr
Linear Regression [*]	-	-	.61	-	.58	1.06
Log. Regr. $L1/L2^{**}$.31	.31	.48	.31	-	.71
Random Forest ^{**}	.68	.64	.61	.69	.41*	.84
$AdaBoost^{**}$.64	.72	.73	.66	-	.81
$XGBoost^{**}$.63	.69	-	.67	-	.83
SVM**	.51	.61	.58	.51	-	.71
FF Neural Network**	.42	.51	-	.40	.42	.53
CNN**	.52	.52	-	.40	.41	.53
LSTM $(raw)^{**}$	-	-	-	-	.34	

Table 3: Overview of different Model Performances. Abbreviations: SLA = Best Performance Small Label Amount, LLA = Best Performance Large Label Amount, 1RR = 1 Random Rater Baseline, 1ER = 1 Expert Rater, SSD = Small Standard Deviation, Mod = Mode, Avg = Average / Mean, Agr = Agreement, WCS = Weighted / Cost-Sensitive Approach, *MSE, **Accuracy, in **bold**: best performance

How do raters influence results of the ML model?

- in reality: train and evaluate on labels of **one** rater
- \rightarrow high variance in rater's results
- results of one model (same hyperparameters, same evaluation method)

	Student	Doctor 1	Expert	Doctor 2
RF classification*	0.688	0.742	0.652	0.640

- Which setting to choose?
- How to find something near to the "ground truth"?

Linear / Logistic / Spline Regression

SVM - without Tuning

- Kernel SVMs: Gaussian Kernel
- Without Tuning: ACC = 0.477 (Mode)

SVM - Tuning

 With Tuning: ACC = 0.529 (Cost-Parameter C and Kernel Width by Grid Search)

SVM - Challenges for Dataset

- Number of Features
 - no accuracy gain
- Class Imbalance
 - SMOTE: ACC = 0.577

Overall distribution of labels (mode)

AdaBoost


```
Resample Result
Task: mode
Learner: classif.ada.multiclass
Aggr perf: acc.test.mean=0.654,mmce.test.mean=0.346
Runtime: 79.4886
```

XGBoost

- Classification with tree boosters (acc 0.673)
- Regression with linear boosters (mse 0.39)
- Tuning by grid search

Random Forest for mode

Confusion Matrix and Statistics

Reference Prediction 0 2 1 3 0 332 85 27 1 102 306 31 1 42 180 16 2 37 7 27 67 7

Overall Statistics

300

200

Accuracy	:	0.6941
95% CI	:	(0.668, 0.7193)
No Information Rate	:	0.3749
P-Value [Acc > NIR]	:	< 2e-16

Kappa : 0.5612 100 Mcnemar's Test P-Value : 0.05879

Statistics by Class:

	Class: 0	Class: 1	Class: 2	Class: 3
Sensitivity	0.6946	0.6955	0.6792	0.72826
Specificity	0.8494	0.8395	0.9059	0.96534
Pos Pred Value	0.7345	0.6955	0.6545	0.62037
Neg Pred Value	0.8226	0.8395	0.9150	0.97858
Precision	0.7345	0.6955	0.6545	0.62037
Recall	0.6946	0.6955	0.6792	0.72826
F1	0.7140	0.6955	0.6667	0.67000
Prevalence	0.3749	0.3451	0.2078	0.07216
Detection Rate	0.2604	0.2400	0.1412	0.05255
Detection Prevalence	0.3545	0.3451	0.2157	0.08471
Balanced Accuracy	0.7720	0.7675	0.7926	0.84680

RF Feature Importance

mode (19 features), filter = information.gain

Random Forest cost-sensitive

Accuracy : 0.7969 95% CI : (0.7167, 0.8628) No Information Rate : 0.375 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7074 Mcnemar's Test P-Value : NA

	Class: 0	Class: 1	Class: 2	Class: 3
Sensitivity	0.9048	0.7708	0.7000	0.75000
Specificity	0.8837	0.9125	0.9388	0.97500
Pos Pred Value	0.7917	0.8409	0.7778	0.66667
Neg Pred Value	0.9500	0.8690	0.9109	0.98319
Precision	0.7917	0.8409	0.7778	0.66667
Recall	0.9048	0.7708	0.7000	0.75000
F1	0.8444	0.8043	0.7368	0.70588
Prevalence	0.3281	0.3750	0.2344	0.06250
Detection Rate	0.2969	0.2891	0.1641	0.04688
Detection Prevalence	0.3750	0.3438	0.2109	0.07031
Balanced Accuracy	0.8942	0.8417	0.8194	0.86250

Cost-Sensitive Approach & Agreement Aggregation

- tested with Random Forest
- Full agreement portion: 19.4%

Model	Accuracy	Model	Accuracy
	needlacy	RF 1 randomly picked rater	.65
(a) Small Dataset	.84	RF mode of all raters	.69
(b) Large Dataset	.62	RF / w cost-sensitivity	.80

Random Forest regression

- MSE of 0.417
- even there weighting according to raters confidence achieved good results

Feed Forward NN

- lower performance than classical machine learning methods
- aggregation approach slightly improved performance

o - 4	4.2e+02	2.2e+02	16	1	0	- 400
ri - 1	L8e+02	1.8e+02	24	0	1	- 320
- 5	22	83	57	1	3	- 240
m -	3	20	38	8	1	- 160
4 -	0	5	10	5	1	- 80
	ό	i	ź	ż	4	- 0

Deep Learning: CNN & LSTM

- too little data
- difficult to choose hyperparameters
- method not as robust, sensitive to variance ir labels

LSTM

CNN

Overall distribution of labels (mode)

Class Imbalance

 \rightarrow SMOTE 5nn \rightarrow class weights

Conceptual Considerations (1)

Conceptual Considerations (2)

Summary & Key Learnings

- **Aggregation of multiple labels** is a very helpful method to infer ground truth
- Aggressive Sample Weighting is gaining accuracy
- **Cost-Sensitive Approach**, which takes the costs for each label within one segment into account is gaining accuracy
- Large Inter-Rater Disagreement / Variability
- Inter-Rater Variability is **very valuable** in inferring ground truth
- Quality of Labels over Quantity of labels for medical data?

Outlook

- Add Active Learning Component
- Refining the current use case
 - Collecting more labels from more experts
 - Collecting more data (more severe cases)
- Other use cases

is a formalized framework system to collect large-scale, high-quality, correctly labeled training data from experts for machine learning applications in the biomedical domain

Team Members & Roles

Ahmet Gündüz: Software Development, Preprocessing, Deep Learning

Gunnar CS König: Software Development, Preprocessing, Deep Learning

Julia M Moosbauer: Software Development, Statistics, Model Building

Franz MJ Pfister: Software Development, Model Building, Domain Knowledge

Thank you for your attention.

COLLEX // A-Team

Ahmet Gündüz Gunnar CS Koenig Julia M Moosbauer Franz MJ Pfister

