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Introduction

• So far we were mostly concerned with supervised learning: we predicted one or several

target variables based on information on one or several input variables

• If applicable, supervised learning is often the best solution and powerful models such

as Neural Networks and kernel approaches are available

• But there are cases where supervised learning is not applicable: (1) there is not only

one target variable of interest but many (2) for each data point different variables

might be missing

• Typical example: medical domain with many kinds of diseases, symptoms, and context

information: for a given patient little is known and one is interested in the prediction

of many possible diseases

• Bayesian networks can deal with these challenges, which is the reason for their popu-

larity in probabilistic reasoning and machine learning
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Bayes Nets

• Deterministic rule-based systems were the dominating approach during the first phase

of AI. A major problem was that deterministic rules cannot deal with uncertainty and

ambiguity

• Probability was rejected since a naive representation would require 2M parameters;

how should all these numbers be specified?

• In Bayes nets one constructs a high-dimensional probability distribution based on a

set of local probabilistic rules

• Bayes nets are closely related to a causal world model

• Bayes Nets started as a small community and then developed to one of the main

approaches in AI

• They also have a great influence on machine learning
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Definition of a Bayes Net

• The random variables in a domain are displayed as nodes (vertices)

• Directed links (arcs, edges) represent direct (causal) dependencies between parent

node and child node

• Quantification of the dependency:

– For nodes without parents one specifies a priori probabilities

P (A = i) ∀i

– For nodes with parents, one specifies conditional probabilities. E.g., for two parents

P (A = i|B = j, C = k) ∀i, j, k
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Joint Probability Distribution

• A Bayes net specifies a probability distribution in the form

P (X1, . . . XM) =
M∏
i=1

P (Xi|par(Xi))

where par(Xi) is the set of parent nodes. This set can be empty.

5



Factorization of Probability Distributions

• Let’s start with the factorization of a probability distribution (see review on Probability

Theory)

P (X1, . . . XM) =
M∏
i=1

P (Xi|X1, . . . , Xi−1)

• This decomposition can be done with an arbitrary ordering of variables; each variable

is conditioned on all predecessor variables

• The dependencies can be simplified if a variable does not depend on all of its prede-

cessors

P (Xi|X1, . . . , Xi−1) = P (Xi|par(Xi))

with

par(Xi) ⊆ X1, . . . , Xi−1
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Causal Ordering

• When the ordering of the variables corresponds to a causal ordering, we obtain a causal

probabilistic network

• A decomposition obeying the causal ordering typically yields a representation with the

smallest number of parent variables

• Deterministic and probabilistic causality: it might be that the underlying true model is

deterministic causal. The probabilistic model leaves out many influential factors. The

assumption is that the un-modeled factors should only significantly influence individual

nodes (and thus appear as noise), but NOT pairs or larger sets of variables (which

would induce dependencies)!
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Design of a Bayes Net

• The expert needs to be clear about the important variables in the domain

• The expert must indicate direct causal dependencies by specifying the directed link in

the net

• The expert needs to quantify the causal dependencies: define the conditional proba-

bility tables
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Inference

• The most important important operation is inference: given that the state a set of

random variables is known, what is the probability distribution of one or several of the

remaining variables

• Let X be the set of random variables. Let Xm ⊆ X be the set of known (measured)

variables and let Xq ∈ X \Xm be the variable of interest and let X r = X \(Xm∪
Xq) be the set of remaining variables
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Inference: Marginalization and Conditioning

• In the simplest inference approach one proceeds as follows :

– We calculate the probability distribution of the known variables and the query

variable via marginalization

P (Xq,Xm) =
∑
X r

P (X1, . . . XM)

– The normalization is calculated as

P (Xm) =
∑
X q

P (Xq,Xm)

– Calculation of the conditional probability distributions

P (Xq|Xm) =
P (Xq,Xm)

P (Xm)
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Propositional Level and Template Level

• Note that the Holmes Network contains propositional Boolean variables such as Alarm

or Burglary. Also, the Alarm Network might only be applicable to a particular clinic.

Thus the Holmes Network and the Alarm Network are examples of propositional

Bayesian networks. This can be related to propositional logic

• In contrast the Chest Clinic example and the Printer Trouble Shooter example are

applicable to any patient, resp. to any printer. Thus here the Bayes net defines a

template, applicable to all patients/printers. The formulation of templates which can

be applied to many entities is a property of predicate logic
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Inference in Bayes nets without Cycles in Undirected Net

• By construction there are no cycles in the directed net; the structure of a Bayesian

net is a directed acyclic graph (DAG)

• But there might be cycles when one ignores the directions

• Let’s first consider the simpler case without cycles in the undirected graph; the struc-

ture of the the Bayes net is a poly-tree: there is at most one directed path between

two nodes
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Marginalization

• The marginalization can be computationally expensive: the sum contains exponentially

many terms; for binary variables 2|X
r|

• The goal is now to exploit the structure of the net to calculate the marginalization

efficient
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Example: Markov Chain (prior evidence)

• Consider the Markov chain of length M with binary variables where the first variable

X1 = x1 and the last variable XM = xM are known

• We can apply the iterative formula for propagating information on X1 = x1 down

the chain (prior evidence), i = 2,3, . . .

πi(xi) ≡ P (Xi = xi|X1 = x1) =
∑
xi−1

P (Xi = xi, Xi−1 = xi−1|X1 = x1)

=
∑
xi−1

P (Xi = xi|Xi−1 = xi−1)P (Xi−1 = xi−1|X1 = x1)

=
∑
xi−1

P (Xi = xi|Xi−1 = xi−1)πi−1(xi−1)

• Thus prior evidence moves down the chain (πi−1(xi−1) → πi(xi)). Note that

P (Xi = xi|Xi−1 = xi−1) is defined in the Markov chain
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Example: Markov Chain (likelihood evidence)

• We can apply the iterative formula for propagating information on XM = xM up

the chain (likelihood evidence), i = M − 1,M − 2, . . .

λi(xi) ≡ P (XM = xM |Xi = xi) =
∑
Xi+1

P (XM = xM , Xi+1 = xi+1|Xi = xi)

=
∑
xi+1

P (Xi+1 = xi+1|Xi = xi)P (XM = xM |Xi+1)

=
∑
xi+1

P (Xi+1 = xi+1|Xi = xi)λi+1(xi+1)

• Thus likelihood evidence moves up the chain (λi+1(xi+1) → λi(xi)). Again,

P (Xi = xi|Xi−1 = xi−1) is defined in the Markov chain
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Posterior Probability

• Then we can calculate for any Xi

P (Xi = xi|X1 = x1, XM = xM) ∝ P (Xi = xi, X1 = x1, XM = xM) =

P (X1 = x1)P (Xi = xi|x1)P (xM |Xi = xi) ∝ πi(xi)λi(xi)

With normalization

P (Xi = xi|X1 = x1, XM = xM) =
πi(xi)λi(xi)∑
i′ πi(xi′)λi(xi′)
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Propagation in Polytrees

• Inference in polytrees can be performed in a similar (but more complex) way

• π and λ propagation is generalized to polytrees
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Max-Propagation

• With similar efficiency, one can calculate the maximum likely configuration (Max-

product Rule)

xrmax = arg max
xr

P (X r = xr,Xm = xm)
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Hidden Markov Models

• Hidden Markov Models (HMMs) are the basis of modern speech recognition systems.

An HMM is a Bayesian network with latent variables

• States corresponds to phonemes; measurements correspond to the acoustic spectrum

• The HMM contains the transition probability between states P (Xi|Xi−1) and emis-

sion probabilities P (Y |X).

• To find the most likely sequence of states, the Viterbi Algorithm is employed, which

is identical to the Max-Prop Algorithm
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Loopy Belief Propagation: Belief Propagation in Bayes Nets
with Loops

• When there a loops in the undirected Bayes net, belief propagation is not applicable:

There cannot be a local message passing rule since information arriving at a node

from different paths can be correlated

• Loopy Belief Propagation the application of belief propagation to Bayes nets with

cycles (although strictly not correct)

• The local update rules are applied until convergence is achieved (which is not always

the case)

• Loopy Belief Propagation is applied in Probabilistic Relational Models which are typ-

ically large Bayes nets describing domains where relationships are important, e.g.,

friend of
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Loopy Belief Propagation in Decoding

• Most interesting and surprising: Turbo codes (Berrou) and Low-Density Parity-Check

(LDPC) Codes (Gallager) use Loopy Belief Propagation for decoding. Both become

very close to the Shannon limit and require long code words and thus produce de-

lays. Thus they are not useful for interactive communication but for broadcasting of

information (mobile communication) and in space applications (NASA)

• Supposedly: 3G cell phones use turbo codes, 4G phones use Gallager’s LDPC codes
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Junction tree algorithm: Correct Inference

• Most (non-)commercial Bayes nets contain the junction tree algorithm which realizes

correct probabilistic inference

• The junction tree algorithm combined variables such that the resulting net has no

loops

• The junction tree can be inefficient when the combines variables have many states
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Junction tree algorithm: Basic Idea

• By combining variables to form a new super variable, one can remove the loops

• In the example, we see a loop in the network. The nodes Mary and Susan have each

two states. The super variable Mary-Susan has 4 states.
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Design of a Bayes Net

• The expert needs to be clear about the important variables in the domain

• The expert must indicate direct causal dependencies by specifying the directed link in

the net

• The expert needs to quantify the causal dependencies: define the conditional proba-

bility tables

• This can be challenging if a node has many parents: if a binary node has n binary

parents, then the expert needs to specify 2n numbers!

• To simplify this task one often makes simplifying assumptions; the best-known one is

the Noisy-Or Assumption
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Noisy-Or

• Let X ∈ {0,1} be a binary node with binary parents U1, . . . , Un

• Let qi be the probability, that X = 0 (no symptom), when Ui = 1 (disease) and

all other (diseases) Uj = 0; this means, that ci = 1− qi is the influence of a single

parent (disease) on X (the symptom)

• Then one assumes, P (X = 0|U1, . . . , Un) =
∏n
i=1 q

Ui
i , or equivalently,

P (X = 1|U1, . . . , Un) = 1−
n∏
i=1

q
Ui
i

• This means that if several diseases are present that can cause the symptom, then the

probability of the symptom increases (if compared to the probabilities for the single

disease
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Maximum Likelihood Learning with Complete Data

• We assume that all nodes in the Bayesian net have been observed for N instances

(e.g., N patients)

• ML-parameter estimation simply means counting

• Let θi,j,k be defines as

θi,j,k = P (Xi = k|par(Xi) = j)

• This means that θi,j,k is the probability that Xi is in state k, when its parents are

in the state j (we assume that the states of the parents can be enumerated in a

systematic way)

• Then the ML estimate is

θML
i,j,k =

Ni,j,k∑
kNi,j,k

Here, Ni,j,k is the number of samples in which Xi = k and par(Xi) = j
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MAP-estimate for Integrating Prior Knowledge

• Often counts are very small and a ML-estimate has high variance

• One simply specifies efficient counts (counts from virtual data) which then can be

treated as real counts Let αi,j,k ≥ 0 be virtual counts for Ni,j,k

• One obtains the maximum a posteriori (MAP) estimate as

θMAP
i,j,k =

αi,j,k +Ni,j,k∑
k(αi,j,k +Ni,j,k)
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Missing Data

• The problem of missing data is an important issue in statistical modeling

• In the simplest case, one can assume that data are missing at random

• Data is not missing at random, if for example, I analyse the wealth distribution in a

city and rich people tend to refuse to report their income

• For some models the EM (Expectation Maximization)-algorithm can be applied and

leads to ML or MAP estimates
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EM

• Consider a particular data point l. In the E-step we calculate the probability for
marginal probabilities of interest given the known information in that data point dl
and given the current estimates of the parameters θ̂, using belief proagation or the
junction tree algorithm. Then we get

E(Ni,j,k) =
N∑
l=1

P (Xi = k,par(Xi) = j|dl, θ̂)

Note that if the parent and child nodes are known then P (Xi = k,par(Xi) =
j|dl, θ̂) is either zero or one, otherwise a number between zero and one

• Based on the E-step, we get in the M-step

θ̂ML
i,j,k =

E(Ni,j,k)∑
kE(Ni,j,k)

• E-Step and M-Step are iterated until convergence. One can show that EM does not
decrease the likelihood in each step; EM might converge to local optima, even if there
might only be a global optimum for the model with complete data
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EM-Learning with the HMM and the Kalman Filter

• HMMs are trained using the so-called Baum-Welch-Algorithm. This is exactly an EM

algorithm

• Offline Versions of the Kalman filter can also be performed via EM
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Alternatives for the E-step

• The E-step is really an inference step

• Here, also approximate inference can be used (loopy-belief propagation, MCMC, Gibbs,

mean-field)

31



Beyond Table Representations

• For learning the conditional probabilities, many approaches have been employed

• Decision Trees, Neural networks, log-linear models, ...
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Structural Learning in Bayes Nets

• One can also consider learning the structure of a Bayes net and maybe even discover

causality

• In structural learning, several points need to be considered

• There are models that are structural equivalent. For example in a net with only two

variables A and B one might show that there is statistical correlation between the

two variables, but it is impossible to decide if A → B or A ← B. Colliders (nodes

where arrow-head meet) can make directions identifiable

• In general, the structure of the Bayes model and its parameters model the joint dis-

tribution of all the variables under consideration

• Recall that the way the data was collected can also have influence: I will get a

different distribution if I consider data from the general population or data collected

from patients visiting a specialists in a rich neighborhood
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Structure Learning via Greedy Search

• In the most common approaches one defines a cost function and looks for the structure

that is optimal under the cost function. One has to deal with many local optima

• Greedy Search: One starts with an initial network (fully connected, empty)and makes

local changes (removal of directed link, adding a link, reversing direction of a link, ...)

and accepts the change, when the cost function improves

• Greedy search can be started from different initial conditions

• Alternatives: Simulated Annealing, Genetic Algorithms
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Cost Functions

• As a cost function one might use a cross-validation set

• Often BIC (Bayesian Information Criterion) is used:

1

N
logL−

M

2N
logN

(M is the number of parameters; N is the number of data points)

• Recall, that Bayesian model selection is based on P (D|M). With complete data we

get,

P (D|M) =
N∏
i=1

∏
j

Γ(αi,j)

Γ(αi,j +Ni,j)

∏
k

Γ(αi,j,k +Ni,j,k)

Γ(αi,j,k)

where αi,j =
∑
k αi,j,k and Ni,j =

∑
kNi,j,k and where Γ(·) is the gamma

function
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Constrained-Based Methods for Structural Learning

• One performs statistical independence tests and uses those tests to decide on network

structure

• For the example in the V-structure in the image (1), M and S are marginally mutually

independent but they might become dependent given J . J is dependent on both M

and S

• In the other structure (2), (3), (4), S and M are dependent when J is unknown. But

now M and S become independent given that J is known!

• The structure with the collider (1) can be identified. The structures (2), (3), (4) are

all structurally equivalent
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Causal Interpretation of Structure and Parameters

• One has to be very cautious with a causal interpretation of a learned model

• One assumption is that the world under consideration is causal

• Another assumption is that all relevant information in part of the model

• Sometimes temporal information is available which constraints the direction of links

(Granger causality)
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Concluding Remarks

• Bayesian networks are used as expert systems in medical domains

• The underlying theory can be used to derive the likelihood of complex models (e.g.,

HMMs)

• Markov Nets are related to Bayesian networks and use undirected edges; they typical

do not have a causal interpretation

• Bayes nets and Markov nets are the most important representatives of the class of

graphical models

• In the lecture we focussed on nets with discrete variables. Also commonly studied are

nets with continous variables and Gaussian distributions
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