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Cost Functions

• Let’s consider the prediction of a modelM for input x and with parameters w

f(x,w,M)

• Example: M can be a neural network with a specific architecture. Another example:

M is a linear regression model

• We define a cost function for a data point x, y

costx,y[w,M]

• We will use the terms cost, loss and error exchangeably

• Example (quadratic cost):

cost
q
x,y[w,M] = (y − f(x,w,M))2
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Cost Functions (cont’d)

• Misclassification cost (y ∈ {−1,1}):

costmx,y[w,M] =
1

2
|y − sign(f(x,w,M))|

• Absolute deviation (AD) (y ∈ {−1,1}):

costx,y[w,M] =
1

2
|y − f(x,w,M)|

• Cross-entropy cost function for logistic regression (y ∈ {−1,1}):

costx,y[w,M] =
N∑
i=1

log (1 + exp [−yif(x,w,M)])
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Cost Functions (cont’d)

• Perceptron (y ∈ {−1,1}):

costx,y[w,M] = | − yf(x,w,M)|+

• Vapnik’s optimal hyperplanes (y ∈ {−1,1}):

costx,y[w,M] = |1− yf(x,w,M)|+

• Cross-entropy cost (negative log-likelihood cost)

costlx,y[w,M] = − logP (y|f(x,w,M)

For binary classification, identical to the logistic regression cost function
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Model Selection Based on Generalization Cost

• In statistics one is often interested in the estimation of the value and the uncertainty

of particular parameters. Example: is parameter w1 significantly nonzero?

• In machine learning one is often interested in the generalization cost which is the

average expected cost over all possible data, for any fixed w and modelM

costP (x,y)[w,M] =

∫
costx,y[w,M]P (x, y) dxdy

• A typical assumption is that P (x, y) = P (x)P (y|x) is fixed but unknown
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Average Test Set Cost Estimates the Generalisation Cost

• An estimator of the generalization cost is the average test set cost

costtest[w,M] =
1

T

T∑
i=1

costxi,yi[w,M]

which is the average cost on the T test data points with (xi, yi ∈ test)

• The test data are data points not used in training

• This is an unbiased estimator of the generalization cost, for any fixed w and any model

M; we can compare different models based on their average test set performance

• The variance of this estimator approaches zero for T → ∞; typically one does not

want to reserve a large set of available data as test data; a better alternative is a cross

validation approach, described later
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Average Training Set Cost

• To obtain a better understanding of model performance, one is interested in the

relationship between average training set cost and generalization cost

• We define the average training set cost of the best parameter vector, trained and

evaluated on the training data as

costtrain[ŵ(train),M] =
1

N

N∑
i=1

costxi,yi[ŵ(train),M]

Here, (xi, yi) ∈ train; we use train and D interchangeably
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Analysis of Different Quantities

• So far we were interested in is the generalization cost of a particular model M with

particular best-fit parameters ŵ(train).

• Another quantity of interest is the generalization cost averaged over all possible

training sets of size N (where the training data set is generated from P (x, y))
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Training Set Cost and Generalization Cost

• It turns out that if we calculate the expected average over all training sets of the same

size, then

Etrain

{
costP (x,y)[ŵ(train),M]− costtrain[ŵ(train),M]

}
≥ 0

• Thus in expectation, the average training cost underestimates the generalization cost

for the estimated ŵ, optimized on the training data. Thus the performance of a

trained model should not be evaluated on the training set but on the test set, which

is an unbiased estimator of the generalization cost

• This expression is the focus in a frequentist analysis!
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Preview: Theoretical Analysis

• Consider the special case of models with fixed basis functions and least squares cost

and let’s assume the model is free of bias (no regularization, no structural bias)

• Then the generalization cost of the true model (the best possible model)

cost
q
P (x,y)

[f(·),M] = Residual = σ2

If our training procedure would identify the true parameters, this would be the gener-

alization cost

• The expected generalization cost of the fitted model is

Etrain

{
cost

q
P (x,y)

[ŵ(train),M]
}

= Residual + Var

This term is estimated by the average test set cost; in expectation, it is larger than

the generalization costs of the best model by a term called the variance Var
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Preview: Theoretical Analysis (cont’d)

• The expected average training set cost of the fitted model in some cases is

Etrain
{

costtrain[ŵ(train),M]
}

= Residual−Var

This term is estimated by the average training costs; this term is smaller than the

generalization costs of the best model by the variance Var

• Then we obtain

Etrain

{
costP (x,y)[ŵ(train),M]− costtrain[ŵ(train),M]

}
= 2Var

• For certain models, we can estimate Var
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Empirical Model Comparison

13



Model Selection via Training and Test Data Performance

• This procedure can be applied with huge amounts of available data, N >> Mp,

where Mp is the number of model parameters

• This procedure is typically used in deep learning with large data sets, where a cross

validation approach would be too costly

• Divide the data set randomly into a training data set and a test data set

• Train all models only on the training data: find the best parameters for each model

under consideration

• Evaluate the generalization performance based on the average test set performance

and get costtest[ŵ(train),M] for the different models, as an estimate of the gener-

alization costs costP (x,y)[ŵ(train),M]
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Cross Validation

• Cross validation uses all data in turn for testing

• Consider K- fold cross validation; typical: K = 5 oder K = 10

• The data is partitioned into K sets of approximately the same size

• For k = 1, . . . ,K: The k−th fold (testk) is used for testing and the remaining data

(traink) is used for training (finding the best parameters)

15



Evaluating Performance with Cross Validation

• For each model one gets K test costs

costtestk[ŵ(traink),M], k = 1, . . . ,K

• Now we now consider the generalization costs averaged over the parameter estimates

obtained from different training data sets of size N

• We can estimate this expectation as

EtraincostP (x,y)[ŵ(train),M] ≈
1

K

K∑
k=1

costtestk[ŵ(traink),M] = m(M)
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Variance Estimate

• We can estimate the uncertainty of m(M) as the variance

V̂ ar(M) =
1

K(K − 1)

K∑
k=1

(costtest[ŵ(traink),M]−m(M))2

• Mean and mean-variance estimates can be used to decide if two models significantly

differ in generalization performance: typically, one accepts that modelMi has smaller

generalization cost thanMj, if

Mi +

√
V̂ ar(Mi) <Mj −

√
V̂ ar(Mj)
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Paired Tests

• With few data one can use a paired test

• Basic idea: let’s assume that K = 10; if Mi in all test sets is better than Mj,

then this is a strong indication thatMi performs better, even if the variation in test

set performance masks this behavior (error bars of the estimate are too large)

• Calculate the average difference between both model costs

MeanDiffi,j =
1

K

K∑
k=1

costtestk[ŵ(traink),Mj − costtestk[ŵ(traink),Mi]]

and analyse if this difference is significantly larger than zero
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Paired Tests (cont’d)

• In the case of high correlation, the variance of MeanDiffi,j can be much smaller

than the variances of m(Mi) and m(Mj) , due to the rule var(X − Y ) =

var(X) + var(Y )− 2cov(X,Y )

• For a statistical analysis, one employs the test statistics for the paired t-test

• Alternative approach: Wilcoxon signed-rank test
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Empirical Tuning of
Hyperparameters
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Hyperparameter

• In addition to the normal parameters, often one or several hyperparameters need to

be tuned as well. Example: regularization weight λ

• The tuning should be done on the training fold. Part of the training fold becomes

another fold on which the hyperparameters are tuned

21



Hyperparameters(cont’d)

• Let’s call the folds parameter training fold, hyperparameter fold, and test fold

• In the outer loop we generate training data and test data (as part of K-fold cross

validation)

• In the inner loop we divide the training data into parameter training fold and hyperpa-

rameter fold. We train the parameters using the parameter training fold with different

values of the hyperparameters. We then select the hyperparameter values which give

best performance on the hyper-parameter fold

• We use these hyperparameter values to optimize the model on all training data, and

evaluate this model on the test set
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Learning Theories
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Overview: Statistical Theories and Learning Theories
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Frequentist Statistics

• Rejection of prior probability

• Dominant in the last century

• Fisher

• p-value

• Pearson und Neyman

• Conf .interv., hypoth. test 

(Subjective) Bayesian Statistics:

• Subjective knowledge can be formulated as 

probabilities and can be integrated into statistical 

modeling

VC-Theory (Statistical Learning 

theory)

• No assumption on function

• Worst-case analysis

• Vapnik–Chervonenkis

MDL – Theorie 
(minim. description length)

• Information Theory

• Rissanen, Wallace, 

Boulton

PAC Learning (probably approximate 

correct)

• Similar to VC-Theory

• Also considers computational complexity 

• Valient

Regularization theory
• Regularization: -> increases stability of 

solution; ill-poses problems become 

well-posed

• Hadamard, Tikhonov

Robust Statistics

• Non-Gaussian 

likelihoods

• Huber

Probability
• Example: Bester linear Estimator

• Not really statistics but uses simple 

quantities (correlations) that can be 

estimated from data 

Least squares principle

• Gauss

• Gauss Likelihood

Stein estimation

• Biased estimators 

can beat ML

• Stein estimator

Objective Bayesian Statistic

• Non-informative Priors (Jeffrey)

• Maximum Entropy Priors

Empirical Bayes (technicality)

• Type II likelihood

• Evidence Framework

Algorithmic Statistics

• Focus on predictions (not 

parameter estimation)

• Breiman, Huber, Friedman

• Green:  Frequent.

• Blue:   Bayes

• Gold: 

Learn. Theory

• Red:    Related

Empirical Risc Minimization

• Vapnik

Function 

Approximation 

Theory



Learning Theories

• A: Classical Frequentist Approaches

– Cp Statistics

– Akaikes Information Criterion (AIC)

• B: Bayesian approaches

– Strict Bayes: model averaging instead of model selection

– Bayesian model selection and Bayesian Information Criterion (BIC)

• C: Modern Frequentist Approaches

– Minimum Description Length (MDL) Principle

– Statistical Learning Theory (Vapnik-Chervonenkis (VC) Theory)
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A:Classical Frequentist Approaches
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Frequentist Approaches

• We are again interested in the generalization cost averaged over the parameter esti-

mates from different training data sets of size N

EtraincostP (x,y)[ŵ(train),M]

• Thus we evaluate the quality of a particular modelM and not a particular parameter

vector
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Bias-Variance Decomposition

• We assume a fixed P (x) and than y = f(x) + ε, where ε is uncorrelated uniform

noise

• We use a quadratic cost function. Then one can decompose for the squared cost

Etraincost
q
P (x,y)

[ŵ(train),M] = Bias2 + Var + Residual
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Residual

• The residual cost is simply the cost of the true model

Residual =

∫
(ftrue(x)− y)2P (x, y)dxdy = cost

q
P (x,y)

[ftrue]

• In regression, this is simply the noise variance σ2
ε
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Bias

• The bias is the mean square of the difference between the true model and the average

prediction of all models trained with different training sets of size N . A regularized

model with λ > 0 would typically be biased. A linear model is biased if the true

dependency is quadratic. With m(x) = Etrain(f(x, ŵ(train)))

Bias2 =

∫
[m(x)− ftrue(x)]2 P (x)dx
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Variance

• The variance is the mean square of the difference between trained models and the

average prediction of all models trained with different training sets of size N

Var =

∫
Etrain[f(x, ŵ(train))−m(x)]2P (x)dx
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Background: Some Rules for Variances and Traces

• Let y be a random vector with covariance Cov(y) and let A be a fixed matrix

If z = Ay, then: Cov(z) = ACov(y)AT

• The trace is the sum over the diagonal elements of a matrix. One can show that

trace[Φ(ΦTΦ)−1ΦT ] = M

where M is the number of columns of the matrix Φ. Special case: when Φ is a

square matrix and has an inverse, then Φ(ΦTΦ)−1ΦT = I and the trace of I is

obviously M
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Example: Linear Models

• We assume that the data has been generated with

yi = φ(xi)w + εi

where: εi is independent noise with variance σ2

• We take the ML estimator which is known to be unbiased and is

ŵ = (ΦTΦ)−1ΦTy

Thus we now know that Bias = 0.

• With the rule we just learned we can calculate the parameter covariance

Cov(ŵ) = (ΦTΦ)−1ΦTCov(y)Φ(ΦTΦ)−1

= σ2(ΦTΦ)−1ΦTΦ(ΦTΦ)−1 = σ2(ΦTΦ)−1

• Great, now we know how certain the parameters are. We can now evaluate Var by
taking a large sample of P (x). Unfortunately such a large sample is not available
and we simply approximate it with the training data inputs.
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Variance Estimate

• The mean predictions of our model at the training data inputs is then f = Φw

• Applying the covariance formula again as before, we get

Cov(f) = ΦCov(w)ΦT

• For the variance we really only need the mean over the diagonal terms

Var(f) =
1

N
trace(ΦCov(w)ΦT )
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Example: Linear Models (cont’D)

• Substituting, we get

V̂ar =
1

N
trace(ΦCov(w)ΦT ) =

σ2

N
trace(Φ(ΦTΦ)−1ΦT )

• Now we apply our trace-rule and get

V̂ar =
Mp

N
σ2

where Mp is the number of parameters

• The solution is surprisingly simple, but makes sense: The predictive variance increases

with more noise on the data and with more free parameters and decreases with more

data!
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Generalization Cost of the Best Fit

• Thus the generalization cost for the parameters that minimize the training set costs

is on average

Etraincost
q
P (x,y)

[ŵ(train),M] ≈ σ2 +
Mp

N
σ2 = σ2Mp +N

N

• Thus on average the generalization cost for the parameters optimized on the training

set is larger by
Mp
N σ2, if compared to the generalization cost of the best possible

model
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Training Cost of the Best Fit

• We estimate σ2 as

σ̂2 =
N

N −Mp
cost

q
train[ŵ(train),M]
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CP -statistics

• By substitution we now get

Etraincost
q
P (x,y)

[ŵ(train),M] ≈
N +Mp

N −Mp
cost

q
train[ŵ(train),M]

• This is called Mallot’s CP -statistics

• Thus in model selection on would chose the model where Mallot’s CP is smallest
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Expected Average Training Cost

• By taking the expectation of both sides,

σ2 =
N

N −Mp
Etraincost

q
train[ŵ(train),M]

and thus the expected training error is equal to the Residual minus the Variance,

Etraincost
q
train[ŵ(train),M] = σ2 −

Mp

N
σ2

which, as proclaimed, is the Residual minus the Variance

• We can refer this to the earlier discussion and the difference between generalization

cost and expected average training cost is 2 times the Variance,

Etrain

{
cost

q
P (x,y)

[ŵ(train),M]− cost
q
train[ŵ(train),M]

}
≈ 2

Mp

N
σ2
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Considering Bias

• Discussion: if two models are unbiased, the estimate of the noise level should be more

or less the same and the CP -statistics will choose the smaller one. If the model

becomes too simple (we get bias), the average training cost will contain the bias as

well and σ2 will be estimated to be too large

• Thus one can argue that the smallest unbiased model will be optimal under the CP -

statistics
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Estimates for Variance and Bias

• Let σ̂2
∞ be the estimate for a sufficiently large model (∞), which we can assume to be

unbiased; from this model, we can obtain an unbiased estimate of the noise variance

• The estimates are then

̂Residual = σ̂2
∞ V̂ar =

Mp

N
σ̂2
∞

B̂ias
2

= costtrain(ŵ(train,M))− σ̂2
∞+

Mp

N
σ̂2
∞

= costtrain(ŵ(train,M))−
N −Mp

N
σ̂2
∞

• Note of caution: in the derivations of the formulas, we assumed that the input distri-

bution P (x) is the empirical distribution defined by the training data; in practice, we

want to generalize to new x such that, with considerable structural bias, the Variance

estimate, and thus also the Bias estimate, become inaccurate
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Conceptual Plots

• The next figures show the behavior of bias, variance and residual and average training

and average test costs

• The complexity is controlled by the number of parameters Mp, or the number of

epochs (stopped training), of the inverse of the regularization parameter

• Note that the best models have a Bias > 0
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Akaikes Information Criterion (AIC)

• The analysis so far was only valid for models that minimized the squared cost. Consider

the cross entropy cost function which minimizes the negative log-likelihood

costlx,y[w,M] = − logP (y|x,w,M)

• The log likelihood of the ML-solution is

logL =
N∑
i=1

logP (yi|xi,wML)

• Here, one can apply Akaike’s Information Criterion (AIC ) (as defined in Wikipedia)

AIC = −2 logL+ 2Mp

• A model with a smaller AIC is preferred
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Comments on AIC

• The expression

AIC

2N
=

(
costltrain[ŵ(train),M] +

Mp

N

)
estimates the generalization log-likelihood cost
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Cp and AIC

• The minimizers for AIC and Cp are identical for Gaussian noise with known noise

variance σ2; here,

logL = −
N

2
log(2πσ2)−

1

2σ2

N∑
i=1

(yi − f(xi,w))2

Here, const = −N2 log(2πσ2) is independent of N and Mp

AIC

2N
−

1

2
log(2πσ2) =

1

N

1

2σ2

N∑
i=1

(yi − f(xi,w))2 +
Mp

N

=
1

2σ2

 1

N

N∑
i=1

(yi − f(xi,w))2 + 2
Mp

N
σ2


=

1

2σ2

(
cost

q
train[ŵ(train),M] + 2

Mp

N
σ2
)
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AIC for Likelihood Cost Function and for 1/0 Cost Function
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Proof: Bias-Variance Decomposition

• One can reduce the problem to estimating the decomposition for one parameter. µ is

the parameter and x are the data. We add and subtract Etrain(µ̂)) and we add and

subtract µ (true parameter). Then,

EtrainEx(µ̂−x)2 = EtrainEx
[
(µ̂− Etrain(µ̂)) + (Etrain(µ̂)− µ) + (µ− x)

]2
• One gets

EtrainEx(µ̂− x)2 = Bias2 + Var + Rest

Rest = Ex(x− µ)2

Bias = Etrain(µ̂)− µ

Var = Etrain[µ̂− Etrain(µ̂)]2
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Proof: Bias-Variance Decomposition (cont’d)

EtrainEx(µ̂− x)2 = EtrainEx
[
(µ̂− Etrain(µ̂)) + (Etrain(µ̂)− µ) + (µ− x)

]2
• We get 6 terms. Three are: Bias2, Var, Rest. We need to show that the three

cross terms become zero.

EtrainEx[(µ̂−Etrain(µ̂))(Etrain(µ̂)−µ)] = Etrain[(µ̂−Etrain(µ̂))(Etrain(µ̂)−µ)]

= (Etrain(µ̂)− µ)Etrain[µ̂− Etrain(µ̂)] = Bias× 0 = 0

EtrainEx[(µ̂−Etrain(µ̂))(µ−x)] = Etrain[µ̂−Etrain(µ̂)]Ex[µ−x] = 0×0 = 0

EtrainEx[(Etrain(µ̂)−µ)(µ−x)] = Etrain[Etrain(µ̂)−µ]Ex[µ−x] = Bias×0 = 0
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Bayesian Approaches
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The Bayesian Perspective

• The Bayesian approach does not require model selection!

• One formulates all plausible models under consideration and specifies a prior probability

for those models

P (Mi)

• The posterior prediction becomes

P (y|x) =
∑
i

P (Mi|D)

∫
P (y|x,w,Mi)P (w|D,Mi)dw
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Bayesian Model Selection

• The principled Bayesian approach is sometimes impractical and a model selection is

performed

• A posteriori model probability

P (M|D) ∝ P (M)P (D|M)

• If one assumes that all models have the same prior probability, and the important term

is the so-called marginal likelihood, or model evidence

P (D|M) =

∫
P (D|w,M)P (w|M)dw
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Our Favorite Linear Model

• Fortunately we can sometimes calculate the evidence without solving complex inte-

grals. From Bayes formula we get

P (w|D,M) =
P (D|w,M)P (w|M)

P (D|M)

and thus

P (D|M) =
P (D|w,M)P (w|M)

P (w|D,M)

• This equation must be true for any w. Let’s substitute wMAP and take the log

logP (D|M) =

logP (D|wMAP ,M) + logP (wMAP |M)− logP (wMAP |D,M)

• The first term is the log-likelihood and the second the prior. Both are readily available.

So we only need to take care of the last term
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Our Favorite Linear Model (cont’d)

• Recall from a previous lecture that for a Bayesian approach to linear regression, we

get

P (w|D,M) = N (w;wMAP , cov(w|D))

Here,

cov(w|D,M) = σ2

(
XTX +

σ2

α2
I

)−1
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Our Favorite Linear Model (cont’d)

• Thus at wMAP the exponent is zero (exp(0) = 1) and we are left with the

normalization term

logP (wMAP |D,M) = log
1√

(2π)Mp det cov(w|D,M)

= −
Mp

2
log(2π)−

1

2
log det cov(w|D,M)
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Our Favorite Linear Model (cont’d)

• Thus,

logP (D|M) = logP (D|wMAP ,M) + logP (wMAP ,M)

+
Mp

2
log(2π) +

1

2
log det cov(w|D,M)

• For large N , one can approximate

log det cov(w|D) ≈ −Mp logN + constants

(for large N , cov(w|D) becomes diagonal and the diagonal entries become propor-

tional to 1/N ; thus det(cov(w|D,M)) ∝ (1/N)Mp = N−Mp is then the

product over the diagonals)
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Our Favorite Linear Model (cont’d)

• Thus

logP (D|M) ≈ logP (D|wMAP ,M) + logP (wMAP ,M)

+
Mp

2
log(2π)−

1

2
Mp logN + constants

• If we consider models with different number of parametersMp, then logP (D|wMAP )+

logP (wMAP ) might produce a larger value (better fit) for the model with the larger

Mp. But for the larger model, we subtract a larger Mp logN , so we obtain a com-

promise between both terms at the optimum
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Laplace Approximation of the Marginal Likelihood

• By simplifying the previous equation (we only keep terms that depend on N) and using

the ML (Maximum Likelihood) estimate instead of the MAP estimate one obtains

logP (D|M) ≈ logP (D|ŵML,M)−
Mp

2
logN

• The Bayesian information criterion (BIC) is -2 times this expression (definition in

Wikipedia)

BIC = −2 logP (D|ŵML,M) +Mp logN

(a better model has a smaller BIC)

• This approximation is generally applicable (not just for regression)
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Bayesian Information Criterion (BIC)

• We get

BIC

2N
= costltrain[ŵ(train),M] +

1

2

Mp

N
logN

Compare

AIC

2N
= costltrain[ŵ(train),M] +

Mp

N

• 1
2
Mp
N logN is an estimate of the difference between the average test likelihood and

the average training log-likelihood

• BIC corection is by a factor 1
2 logN larger than the AIC correction and decreases

more slowly (logN)/N with the number of training examples
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C: Modern Frequentist Approaches

59



Minimum Description Length (MDL)

• Based on the concept of algorithmic complexity (Kolmogorov, Solomonoff, Chaitin)

• Based on these ideas: Rissanen (and Wallace, Boulton) introduced the principal of

the minimum description length (MDL)

• Under simplifying assumptions the MDL criterion becomes the BIC criterion
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Statistical Learning Theory

• The Statistical Learning Theory (SLT) is in the tradition of the Russian mathematicians

Andrey Kolmogorov and Valery Ivanovich Glivenko and the Italian mathematician

Francesco Paolo Cantelli

• SLT was founded by Vladimir Vapnik and Alexey Chervonenkis (VC-Theory)

• Part of Computational Learning Theory (COLT); similar to PAC (probably approxi-

mately correct ) Learning (Leslie Valiant)
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Function Classes

• As before: data is generated according to some distribution P (x, y). This distribution

is fixed but otherwise arbitrary

• As before: SLT considers functions out of a function class fw(x) ∈ M. Example:

M is the class of all linear classifiers with Mp = M + 1 parameters (for simplicity,

we consider that an element of the function class can be described by a parameter

vector w)

• SLT does not assume that the best possible (true or target) function ftrue(x) is

contained inM

• We now consider binary classification without noise (i.e., classes are in principal sep-

arable)
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SLT Bounds

• As before: train is a random sample of P (x, y)

• SLT considers the difference between costm
P (x,y)[w,M] and costmtrain[w,M] (recall

that costm denotes the misclassification cost); we are interested in the difference be-

tween generalization cost and average training cost for any w (not just for ŵ(train))

• As before: probabilities are calculated w.r.t. all training sets of size N
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SLT Bounds (cont’d)

• SLT shows that with (large) probability 1− η that for any w,

costmP (x,y)[w,M] ≤ costmtrain[w,M] + ε

• Model selection is performed on

costmtrain[ŵ(train),M] + ε

(note; for model selection, we consider the particular parameter choice ŵ(train) )
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VC-Dimension

• The statement is trivially true for a large enough ε; the science (and the art) is now

to find the smallest possible ε

• Of great importance is the so-called VC-dimension dimVC of the model class

• Wikipedia: In Vapnik-Chervonenkis theory, the VC dimension (for Vapnik-Chervonenkis

dimension) is a measure of the capacity (complexity, expressive power, richness, or

flexibility) of a space of functions that can be learned by a statistical classification

algorithm. It was originally defined by Vladimir Vapnik and Alexey Chervonenkis

• The VC-dimension can be finite or infinite. For linear classifiers dimVC = Mp =
M + 1, which means that the VC-dimension is simply the number of parameters

• For systems with a finite VC dimension, the bound decreases with N when N >

dimV C .

• In practice, costmtrain[ŵ(train),M] + ε is much larger than the average test set

error, which limits the application of the theory in practice
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Typical Bound

• A typical estimate is

ε =

√√√√ 1

N

[
dimV C

(
log

(
2N

dimVC

)
+ 1

)
− log

(η
4

)]
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Comparing SLT and a Frequentist Approach

• SLT does not make any assumption about the true function; in a frequentist view,

this can mean that the bias can be large

• SLT makes a statement about the worst case (supremum); often the supremum cor-

responds to the weight vector that minimizes the training cost, i.e. ŵ(train)

• Note: training data is are not worse case (they are not selected by a demon to fool

you): they are assumed to be generated i.i.d. from a fixed P (y|x)P (x)
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Informal Link to Cp

• In the Cp analysis of systems with fixed basis functions, we use

cost
q
train[ŵ(train)] + 2V̂ ar

for model selection, with V̂ ar =
Mp
N σ̂2

• To get closer to the spirit of SLT, one could use for model selection

cost
q
train[ŵ(train)] + 2V̂ ar + 2

√
V̂ ar(V̂ ar)

So we also consider the uncertainty of the variance estimate
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Conclusion

• Machine learning focusses on generalization costs and traditionally not as much on

parameter estimation, although explainable AI is gaining interest

• Empirical model selection is most often used. If possible, cross validation results should

be reported

• Frequentist approaches typically estimate EtraincostP (x,y)[ŵ(train),M]. We have

studied CP and the AIC

• Bayesian approaches do model averaging instead of model selection. The BIC criterion

is useful, if model selection needs to be performed

• An advantage of the SLT is that the true function does not need to be included in the

function class; the derived bounds are typically often rather conservative

• SLT has been developed in the Machine Learning community, whereas frequentist and

Bayesian approaches originated in Statistics
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Appendices
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P-norm Cost Functions

• A p-norm is

‖x‖p :=

 N∑
i=1

|xi|p
1/p

• Let y be targets on the training data and ŷ the vector of predictions of the classifier

• Then the quadratic cost can be written as ‖y − ŷ‖22, the absolute value cost as

‖y − ŷ‖1

• ‖y − ŷ‖∞ is the infinity norm which is equal to the maximum absolute value of its

components

• `p-norms generalize the p-norm to sequence spaces

• Lp-norms generalize the p-norm to function spaces
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Evaluation

• The cost functions defined before can also be used to evaluate the performance on the

test data; but measures like the cross-entropy on test data are difficult to interpret

• Note that the evaluation of the test set performance reduces to the evaluation of the

scatter plot of y and ŷ = 0.5(1 + sign(f(x,w,M)

• For regression: mean-squared test set cost, explained variance, and Pearson correlation

are popular choices

• For classification all is contained in the 2× 2 table of y ∈ {0,1} and ŷ ∈ {0,1}
on the test data

• For balanced classes one typically reports mutual information and accuracy

• For unbalanced classes one focusses on measures derived from the co-occurrence dis-

tribution
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Measures for Performance Evaluation*

• True Positive (a.k.a. hit)(y ∈ {0,1}):

TPx,y[w,M] = yŷ

• True Negative (y ∈ {0,1}):

TNx,y[w,M] = (1− y)(1− ŷ)

• False Positive (a.k.a. false alarm, type I error) (y ∈ {0,1}):

FPx,y[w,M] = (1− y)ŷ

• False Negative (a.k.a. miss, type II error) (y ∈ {0,1}):

FNx,y[w,M] = y(1− ŷ)
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Precision, Recall, and Specificity

Based on these, one defines

• Precision (positive predicted value):

TPtest
TPtest + FPtest

≈ P (Y = 1|Ŷ (X) = 1)

• Recall (sensitivity, true positive rate, hit rate, or detection rate):

TPtest
TPtest + FNtest

≈ P (Ŷ (X) = 1|Y = 1)

• Specificity (True Negative Rate):

TNtest
FPtest + TNtest

≈ P (Ŷ (X) = 0|Y = 0)
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F1 and Accuracy

• F1-score

F1 = 2
Precision× Recall

Precision + Recall

• Accuracy

TPtest + TNtest
TPtest + TNtest + FPtest + FNtest
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Interpretation: Inverse Model

• Consider a fire detector where X is the degree of smoke associated with a fire Y = 1;

the fire is the cause, the smoke is the effect, Y → X

• The fire detector Ŷ (X) tries to model the inverse: predict the probability of a fire

Y given the degree of smoke X

• Recall (Sensitivity) is the probability that there is an alarm when there is a fire:

P (Ŷ (X) = 1|Y = 1)

• Specificity is the probability that there is no alarm when there is no fire:

P (Ŷ (X) = 0|Y = 0)

• Recall and Specificity condition on Y and are thus independent on the prevalence

of fire in a neighborhood. They measure the performance of a fire detector and

are the basis for the ROC curve
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Interpretation: Inverse Model (cont’d)

-

• Precision is the probability that there is a fire when there is an alarm:

P (Y = 1|Ŷ (X) = 1)

• Usefulness in an application: Recall and Precision is what you typically care

about in an application: you don’t want to have false alarms (you want to have a high

precision) and you don’t want to miss a fire (you want to have a high recall)

• But Precision is not independent of the prevalence of fire in an environment!
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Interpretation: Forward Model

• Y is the interest of a user (the effect), X is the web page (the cause) and Ŷ (X) is

the estimated interest, X → Y

• The model tries to model the forward model: predict the probability of a user interest

given X

• Recall (Sensitivity) is the probability that we label each relevant web page as being

interesting (each relevant page should be shown to you):

P (Ŷ = 1(X)|Y = 1)

• Precision is the probability that a web page is of interest when we label it to be

interesting (if a page is shown to you, it should be relevant):

P (Y = 1|Ŷ (X) = 1)

• Again, in the application one is interested in a high Recall and a high Precision

78


