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Classification

• Classification is the central task of pattern recognition

• Sensors supply information about an object: to which class do the object belong (dog,

cat, ...)?

2



Linear Classifiers

• Linear classifiers separate classes by a linear hyperplane

• In high dimensions a linear classifier often can separate the classes

• Linear classifiers cannot solve the exclusive-or problem

• In combination with basis functions, kernels or a neural network, linear classifiers can

form nonlinear class boundaries
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Hard and Soft (sigmoid) Transfer Functions

• First, the activation function of the neu-

rons in the hidden layer are calculated as

the weighted sum of the inputs xi as

h(x) =
M−1∑
j=0

wjxj

(note: x0 = 1 is a constant input, so

that w0 corresponds to the bias)

• The sigmoid neuron has a soft (sigmoid)

transfer function

Perceptron : ŷ = sign(h(x))

Sigmoid function: ŷ = sig(h(x))
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Binary Classification Problems

• We will focus first on binary classification where the task is to assign binary class labels

yi = 1 and yi = 0 (or yi = 1 and yi = −1 )

• We already know the Perceptron. Now we learn about additional approaches

– I. Generative models for classification

– II. Logistic regression

– III. Classification via regression
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Two Linearly Separable Classes
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Two Classes that Cannot be Separated Linearly
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The Classical Example not two Classes that cannot be
Separated Linearly: XOR
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Separability is not a Goal in Itself. With Overlapping Classes
the Goal is the Best Possible Hyperplane
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I. Generative Model for Classification

• In a generative model one assumes a probabilistic data generating process (likelihood
model). Often generative models are complex and contain unobserved (latent, hidden)
variables

• Here we consider a simple example: how data are generated in a binary classification
problem

• First we have a model how classes are generated P (y). y = 1 could stand for a
good customer and y = 0 could stand for a bad customer.

• Then we have a model how attributes are generated, given the classes P (x|y). This
could stand for

– Income, age, occupation (x) given a customer is a good customer (y = 1)

– Income, age, occupation (x) given a customer is not a good customer (y = 0)

• Using Bayes formula, we then derive P (y|x): the probability that a given customer is
a good customer y = 1 or bad customer y = 0, given that we know the customer’s
income, age and occupation
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How is Data Generated?

• We assume that the observed classes yi are generated with probability

P (yi = 1) = κ1 P (yi = 0) = κ0 = 1− κ1

with 0 ≤ κ1 ≤ 1.

• In a next step, a data point xi has been generated from P (xi|yi)

• (Note, that xi = (xi,1, . . . , xi,M)T , which means that xi does not contain the

bias xi,0)

• We now have a complete model: P (yi)P (xi|yi)
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Bayes’ Theorem

• To classify a data point xi, i.e. to determine the yi, we apply Bayes theorem and get

P (yi|xi) =
P (xi|yi)P (yi)

P (xi)

P (xi) = P (xi|yi = 1)P (yi = 1) + P (xi|yi = 0)P (yi = 0)
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ML Estimate for Class Probabilities

• Maximum-likelihood estimator for the prior class probabilities are

P̂ (yi = 1) = κ̂1 = N1/N

and

P̂ (yi = 0) = κ̂0 = N0/N = 1− κ̂1

where N1 and N0 is the number of training data points for class 1, respectively class

0

• Thus the class probabilities simply reflect the class mix
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Class-specific Distributions

• To model P (xi|yi) one can chose an application specific distribution

• A popular choice is a Gaussian distribution (normal discriminant analysis)

P (xi|yi = l) = N (xi; ~µ
(l),Σ)

with

N
(
xi; ~µ

(l),Σ
)

=
1

(2π)M/2
√
|Σ|

exp

(
−

1

2

(
xi − ~µ(l)

)T
Σ−1

(
xi − ~µ(l)

))
• Note, that both Gaussian distributions have different modes (centers) but the same

covariance matrices. This has been shown to often work well
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Maximum-likelihood Estimators for Modes and Covariances

• One obtains a maximum likelihood estimators for the modes

~̂µ
(l)

=
1

Nl

∑
i:yi=l

xi

• One obtains as unbiased estimators for the covariance matrix

Σ̂ =
1

N −M

1∑
l=0

∑
i:yi=l

(xi − ~̂µ
(l)

)(xi − ~̂µ
(l)

)T
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Expanding the Quadratic Terms in the Exponent

• Note that

−
1

2

(
xi − ~µ(l)

)T
Σ−1

(
xi − ~µ(l)

)
= −

1

2
xTi Σ−1xi + ~µ(l)T Σ−1xi −

1

2
~µ(l)T Σ−1~µ(l)

• ... and thus, as we need next, for the difference of two quadratic terms (the first terms

cancel)...

−
1

2

(
xi − ~µ(0)

)T
Σ−1

(
xi − ~µ(0)

)
+

1

2

(
xi − ~µ(1)

)T
Σ−1

(
xi − ~µ(1)

)
=
(
~µ(0) − ~µ(1)

)T
Σ−1xi −

1

2
~µ(0)T Σ−1~µ(0) +

1

2
~µ(1)T Σ−1~µ(1)
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A Posteriori Distribution

• It follows that

P (yi = 1|xi) =
P (xi|yi = 1)P (yi = 1)

P (xi|yi = 1)P (yi = 1) + P (xi|yi = 0)P (yi = 0)

=
1

1 + P (xi|yi=0)P (yi=0)
P (xi|yi=1)P (yi=1)

=
1

1 + κ0
κ1

exp
(

(~µ(0) − ~µ(1))TΣ−1xi − 1
2 ~µ

(0)T Σ−1~µ(0) + 1
2 ~µ

(1)T Σ−1~µ(1)
)

= sig
(
w0 + xTi w

)
= sig

w0 +
M∑
j

xi,jwj
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A Posteriori Distribution (cont’d)

• We get (w is without w0)

w = Σ−1
(
~µ(1) − ~µ(0)

)
w0 = logκ1/κ0 +

1

2
~µ(0)T Σ−1~µ(0) −

1

2
~µ(1)T Σ−1~µ(1)

• Recall: sig(arg) = 1/(1 + exp(−arg))
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Comments

• This specific generative model leads to linear class boundaries

• But we do not only get class boundaries, we get probabilities

• (Comment: The solution is analogue to Fisher’s linear discriminant analysis (LDA),

where one projects the data into a space in which data from the same class have small

variance and where the distance between class modes are maximized. In other words,

one gets the same results from an optimization criterion without assuming Gaussian

distributions)

• Although we have used Bayes formula, the analysis was frequentist. A Bayesian anal-

ysis with a prior distribution on the parameters is also possible

• If the two class-specific Gaussians have different covariance matrices (Σ(0),Σ(1))

the approach is still feasible but one would need to estimate two covariance matrices

and the decision boundaries are not linear anymore; still, one can simply apply Bayes

rule to obtain posterior probabilities
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• The generalization to multiple classes is straightforward: simply estimate a different

Gaussian for each class (with shared covariances or not) and apply Bayes rule

• Generative-Discriminative pair: Normal Discriminant Analysis (as a generative model)

and logistic regression as a discriminant model



Special Case: Naive Bayes

• With diagonal covariances matrices, one obtains a Naive-Bayes classifier

P (xi|yi = l) =
M∏
j=1

N (xi,j;µ
(l)
j , σ2

j )

• The naive Bayes classifier has considerable fewer parameters but completely ignores

class-specific correlations between features; this is sometimes considered to be naive

• Even more naive (all Gaussian have identical variance):

P (xi|yi = l) =
M∏
j=1

N (xi,j;µ
(l)
j , σ2)
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Logistic Regression from Naive Bayes

• We have parameters, for the latter case,

wj =
1

σ2

(
µj

(1) − µj(0)
)

w0 = logκ1/κ0 +
1

2σ2

∑
j

(
µ

(0)
j

)2
−
(
µ

(1)
j

)2

• Note that wj is completely independent of other inputs; adding or removing other

inputs does not change wj;

• In contrast w0 depends on all dimensions

• The smaller σ2, the sharper the transition
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Special Case: Bernoulli Naive Bayes

• Naive Bayes classifiers are popular in text analysis with often more than 10000 features

(key words). For example, the classes might be SPAM and no-SPAM and the features

are keywords in the texts

• Instead of a Gaussian distribution, a Bernoulli distribution is employed

• P (wordj = 1|SPAM) = γj,s is the probability of observing word wordj in the

document for SPAM documents

• P (wordj = 0|SPAM) = 1 − γj,s is the probability of not observing word wordj
in the document for SPAM documents

• P (wordj = 1|no-SPAM) = γj,n is the probability of observing word wordj in the

document for non-SPAM documents

• P (wordj = 0|no-SPAM) = 1−γj,n is the probability of not observing word wordj
in the document for non-SPAM documents
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Special Case: Bernoulli Naive Bayes (cont’d)

• Then

P (SPAM|doc) =

κs
∏
j γ

wordj
j,s (1− γj,s)1−wordj

κs
∏
j γ

wordj
j,s (1− γj,s)1−wordj + κn

∏
j γ

wordj
j,n (1− γj,n)1−wordj

• Simple ML estimates are γj,s = Nj,s/Ns and γj,n = Nj,n/Nn

(Ns is the number of SPAM documents in the training set, Nj,s is the number of

SPAM documents in the training set where wordj is present)

(Nn is the number of no-SPAM documents in the training set, Nj,n is the number

of no-SPAM documents in the training set where wordj is present)
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Special Case: Bernoulli Naive Bayes (cont’d)

• Note, that we can also write

P (SPAM|doc) = sig(w0 +
∑
j

wjwordj)

with

w0 = logκs/κn +
∑
j

log(1− γj,s)− log(1− γj,n)

wj = [log γj,s − log γj,n]− [log(1− γj,s)− log(1− γj,n)]

• Thus the Bernoulli naive Bayes classifier and logistic regression form a Generative-

Discriminative pair, as well
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II. Logistic Regression

• The Generative-Discriminative pairs, with logistic regression as the discriminant ver-

sion, to directly model discriminatively

P (yi = 1|xi) = sig
(
xTi w

)
(now we include the bias xTi = (xi,0 = i,1, xi,1, . . . , xi,M−1)T ). sig() as

defined before (logistic funktion).

• One now optimizes the likelihood of the conditional model

L(w) =
N∏
i=1

sig
(
xTi w

)yi (
1− sig

(
xTi w

))1−yi
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Log-Likelihood

• Log-likelihood function

l =
N∑
i=1

yi log
(

sig
(
xTi w

))
+ (1− yi) log

(
1− sig

(
xTi w

))

l =
N∑
i=1

yi log

(
1

1 + exp(−xTi w)

)
+ (1− yi) log

(
1

1 + exp(xTi w)

)

= −
N∑
i=1

yi log(1 + exp(−xTi w)) + (1− yi) log(1 + exp(xTi w))
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Adaption

• The derivatives of the log-likelihood with respect to the parameters

∂l

∂w
=

N∑
i=1

yi
xi exp(−xTi w)

1 + exp(−xTi w)
− (1− yi)

xi exp(xTi w)

1 + exp(xTi w)

=
N∑
i=1

yixi(1− sig(xTi w))− (1− yi)xisig(xTi w)

=
N∑
i=1

(yi − sig(xTi w))xi

• A gradient-based optimization of the parameters to maximize the log-likelihood

w←− w + η
∂l

∂w

• Typically one uses a Newton-Raphson optimization procedure
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Logistic Regression as a Generalized Linear Models (GLM)

• Consider a Bernoulli distribution with P (y = 1) = θ and P (y = 0) = 1 − θ,

with 0 ≤ θ ≤ 1

• In the theory of the exponential family of distributions, one sets θ = sig(η). Now

we get valid probabilities for any η ∈ R!

• η is called the natural parameter and sig(·) the inverse parameter mapping for the

Bernoulli distribution

• This is convenient if we make η a linear function of the inputs and one obtains a

Generalized Linear Model (GLM)

P (yi = 1|xi,w) = sig(xTi w)

• Thus logistic regression is the GLM for the Bernoulli likelihood model
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Application to Neural Networks and other Systems

• Logistic regression essentially defines a new cost function

• It can be applied as well to neural networks

P (yi = 1|xi,w) = sig(NN(xi))

or systems of basis functions or kernel systems
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Multiple Classes and Softmax

• Consider a multinomial distribution with P (y = c) = θc, with θc ≥ 0 and∑C
c=1 θc = 1. c is the class index and C is the number of classes

• We reparameterize (exponential family of distributions)

θc =
exp(ηc)∑C

c′=1 exp(ηc′)

• The ηc are unconstrained; softmax notation: θc = softmaxc(~η)

• In GLM, we set ηc = xTwc and

P (y = c|x) =
exp(xTwc)∑C

c′=1 exp(xTwc′)

• The negative log-likelihood (cross entropy) becomes

−l = −
N∑
i=1

 C∑
c=1

yi,cx
T
i wc − log

C∑
c=1

exp(xTi wc)
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Multiple Classes and Softmax (cont’d)

• The gradient becomes

−
∂l

∂wj,c
= −

∑
i

(
yi,c xi,j −

xi,j exp(xTi wc)∑C
c=1 exp(xTi wc)

)
and SGD becomes

wj,c ← wj,c + ηxi,j(yi,c − softmaxc(x
T
i wc))

• Compare: for the Bernoulli model with C binary classes, we got

wj,c ← wj,c + ηxi,j

(
yi,c − sig

(
xTi wc

))
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III. Classification via Regression

• Linear Regression:

f(xi,w) = w0 +
M−1∑
j=1

wjxi,j

= xTi w

• We define as target yi = 1 if the pattern xi belongs to class 1 and yi = 0 (or

yi = −1 ) if pattern xi belongs to class 0

• We calculate weights wLS = (XTX)−1XTy as LS solution, exactly as in linear

regression

• For a new pattern x we calculate f(x) = xTwLS and assign the pattern to class 1

if f(x) > 1/2 (or f(x) > 0 ) ; otherwise we assign the pattern to class 0
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Bias

• Asymptotically, a LS-solution converges to the posterior class probabilities, although

a linear functions is typically not able to represent P (c = 1|x). The resulting class

boundary can still be sensible

• One can expect good class boundaries in high dimensions and/or in combination with

basis functions, kernels and neural networks; in high dimensions sometimes consistency

can be achieved. In essence it is necessary that the linear model can model the expected

probability P (c = 1|x)
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Classification via Regression with Linear Functions
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Classification via Regression with Radial Basis Functions
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Performance

• Although the approach might seem simplistic, the performance can be excellent (in

particular in high dimensions and/or in combination with basis functions, kernels and

neural networks). The calculation of the optimal parameters can be very fast!
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Logistic Regression in Medical
Statistics

37



Logistic Regression in Medical Statistics

• Logistic regression has become one of the the most important tools in medicine to
analyse the outcome of treatments

• In epidemiology, the output y = 1 means that the patient has the disease

• x1 = 1 might represent the fact that the patient was exposed (e.g., by a genetic
variant, smoking, or an environmental factor) and x1 = 0 might mean that the
patient was not exposed; the other inputs are often typical confounders (age, sex, ...)

• In treatment evaluation, x1 = 1 means that the patient received the treatment,
and x1 = 0 means that the patient did not receive the treatment; the output
represents the outcome after treatment; e.g., y = 1 can mean that the patient is
cured by the treatment

• Logistic regression then permits the prediction of the outcome for any patient

• Of course, of great interest is if w1 is significantly nonzero, which relates to the
individual’s response, but also the population response (i.e., the exposure is harmful
in the population; the treatment is successful in the population)
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Log-Odds

• The odds for a patient with properties xi is defined as

Odds(xi) =
P (yi = 1|xi)
P (yi = 0|xi)

• For logistic regression, the log odds is

LogOdds = log
P (yi = 1|xi)
P (yi = 0|xi)

= log
1

1 + exp(−xTi w)

1 + exp(−xTi w)

exp(−xTi w)

= log
1

exp(−xTi w)
= xTi w

• Thus the log odds of the outcome is h = xTi w, which is the net input or the logit
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Log Odds Ratio

• The odds ratio is defined as

OR =
Odds(xx1=1)

Odds(xx1=0)

• The log odds ratio evaluates the effect of the treatment

log(OR) = logOdds(xx1=1)− logOdds(xx1=0)

• In logistic regression, we get the log odds ratio is identical to w1, since

(w0 + w1 +
N∑
j=2

xi,j)− (w0 + 0 +
N∑
j=2

xi,j) = w1

• If w1 is significantly nonzero, then the exposure/treatment has an effect; the odds

ratio is commonly used in case-control studies!
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Appendix: Information Theory
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Entropy

• Here we consider discrete variables; corresponding results also exist for continuous

variables

• In information theory, the entropy is defined as

H(P ) = −
∑
x

P (X = x) logP (X = x)

• It represents the (minimum) number of bits required to encode data points generated

from P (X); this is a nonnegative quantity since logP (X = x) ≤ 0
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Cross Entropy

• One is interested in the relationship between the true distribution P (which generated

the data) and the approximating distribution Q (e.g., a machine learning model)

• The cross entropy between a true distribution P and an approximative distribution

Q is defined as

H(P,Q) = −
∑
x

P (X = x) logQ(X = x)

• It represents the minimum number of required bits if the encoding assumes Q(X)

whereas the true distribution is P (X)
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KL-Divergence

• The cross-entropy cannot be smaller than the entropy: H(P,Q) ≥ H(P ). The

difference between the cross entropy and the entropy is a distance measure for dis-

tributions and is called the relative entropy or KL divergence (Kullback-Leibler

divergence)

D(P‖Q) = H(P,Q)−H(P )

• We get

D(P‖Q) =
∑
x

P (X = x) log
P (X = x)

Q(X = x)
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Cross-entropy Cost Function and Log-Likelihood

• Consider that you fit a model Q to the data

• We apply the cross entropy and assume that P (X) is approximated by the empirical

distribution of the data {xi}i and Q(X) represents the model and we get

H(P,Q) ≈ −
∑
i

logQ(xi) = −logLikelihood(Q)

• Thus, with this approximation, the cross entropy is identical to the negative

log-likelihood

• Assuming that P (X) is approximated by the empirical distribution, the negative

log-likelihood is also identical to the KL divergence plus the entropy

−logLikelihood(Q) ≈ D(P‖Q) +H(P )

H(P ) is only data dependent and not model dependent; thus minimizers agree
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Cross-entropy Cost Function for Prediction (Conditional
Models)

• We consider the true P (Y |X) and the modelQ(Y |X); The cross entropy of interest

is

H(P (Y |X), Q(Y |X)) = −
∫
P (Y |X) logQ(Y |X)dY

• We now take the expectation w.r.t. X, and get

EXH(P (Y |X), Q(Y |X)) = −
∫ ∫

P (Y |X) logQ(Y |X)P (X)dY dX

= −
∫ ∫

P (X,Y ) logQ(Y |X)dY dX

• We approximate P (X,Y ) by the observed data {xi, yi}i and get

EXH(P (Y |X), Q(Y |X)) ≈ −
∑
i

logQ(yi|xi)
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which again is the negative log likelihood for supervised learning



Relationship betweens Random Variables

• Whereas in the definition of entropy, cross entropy and KL divergence, we were inter-

ested in the relationships between different distributions defined on the same random

variables, another goal is to quantify relationships between two different random vari-

ables X and Y when P (X,Y ) is given

• Conditional Entropy: is defined as

H(Y |X) =
∑
x

∑
y

P (X = x, Y = y)P (Y = y|X = x)

• In information theory, the conditional entropy (or equivocation) quantifies the amount

of information needed to describe the outcome of a random variable Y given that the

value of another random variable X is known
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Mutual Information

• Mutual Information: is defined as

I(X;Y ) =
∑
y

∑
x

P (X = x, Y = y) log

(
P (X = x, Y = y)

P (X = x)P (Y = y)

)

• It is symmetric and can be written as

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y )

• Intuitively, mutual information measures the information that X and Y both share:

It measures how much knowing one of these variables reduces uncertainty about the

other; it is useful for calculating the channel capacity in communication theory

• Mutual information is one quantity used to determine if two random variables are

dependent or independent; for example it might be used if an input X is predictive

for an output Y , in particular if both quantities are discrete
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Cross-entropy Cost Function for Binary Classification

• The log-likelihood cost function is identical to the cross entropy cost function
and is written for yi ∈ {0,1}

cost = −
N∑
i=1

yi log(sig(xTi w))− (1− yi) log(1− sig(xTi w)))

=
N∑
i=1

yi log(1 + exp(−xTi w)) + (1− yi) log(1 + exp(xTi w))

=
N∑
i=1

log
(

1 + exp
(

(1− 2yi)x
T
i w
))

• ... and for yi ∈ {−1,1}

cost =
N∑
i=1

log
(

1 + exp
(
−yixTi w

))
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