
Manifolds, Autoencoders and
Generative Adversarial Networks

Volker Tresp
Summer 2019

1

Manifolds

• In mathematics, a manifold is a topological space that locally resembles Euclidean

space near each point

• A topological space may be defined as a set of points, along with a set of neighbour-

hoods for each point, satisfying a set of axioms relating points and neighbourhoods

2

Data Represented in Feature Space

• Consider Case Ib (manifold): input data only occupies a manifold

• Example: consider that the data consists of face images; all images that look like faces

would be part of a manifold

• What is a good mathematical model? We assume that“nature”produces data in some

low-dimensional space hnat ∈ RMh, but nature only makes data available in some

high-dimensional feature space x ∈ RM (x might describe an image, in which case

M might be a million)

• Features map

x = featureMap(hnat)

• A topological space may be defined as a set of points, along with a set of neighbour-

hoods for each point, satisfying a set of axioms relating points and neighbourhoods

3

Manifold in Machine Learning

• In Machine Learning: in the observed M -dimensional input space, the data is dis-

tributed on an Mh-dimensional manifold

{x ∈ RM : ∃h ∈ RMh s.th. x = ggen(h)}

where ggen(·) is smooth

• Note that for a given x, it is not easy to see if it is on the manifold

4

Feature Engineering

• In a way, features are like basis functions, but supplied by nature or an application

expert (feature engineering)

• In the spirit of the discussion in the lecture on the Perceptron: hnat might be low-

dimensional and explainable, but we can only measure x

5

Learning a Generator / Decoder

• Example: x represents a face; let’s assume nature selects hnat from anMh-dimensional

Gaussian distribution with unit covariance

• Then, if the feature map is known, we can generate new natural looking faces of

people who do not exist: x = featureMap(hnat)

• We try to emulate this process by a model

x = ggen(h)

(here we drop the superscript nat, since this h is part of our model and not the

ground truth hnat)

• In an autoencoder, the generator is called a decoder gd(·)

6

Learning an Encoder

• Of course for data point i we only know xi but we do not know hnati

• But maybe we can estimate hi ≈ hnati based on some encoder network

hi = ge(xi)

7

Encoder

• An encoder can be useful by itself: it can serve as a preprocessing step in a classification

problem (Case Ib (manifold))

8

Learning an Autoencoder

10

Learning an Encoder

• If we have,

x = featureMap(hnat)

we might want to learn an approximate inverse of the feature map

h = ge(x)

• ge(x) is called an encoder

Autoencoder

• How can we learn h = ge(x) if we do not measure h ?

• Consider a decoder (which might be close to the feature map)

x = gd(h)

But again, h is not measured

• We now simply concatenate the two models and get

x̂ = gd(ge(x))

• This is called an autoencoder

11

Linear Autoencoder

• If the encoder and the decoder are linear functions, we get a linear autoencoder

• A special solution is provided by the principal component analysis (PCA)

Encoder:

h = ge(x) = VT
hx

Decoder:

x̂ = gd(h) = Vhh = VhV
T
hx

• The Vh are the first Mh columns of V, where V is obtained from the SVD

X = UDVT

12

Neural Network Autoencoder

• In the Neural Network Autoencoder, the encoder and the decoder are modelled by

neural networks

• The cost function is

cost(W,V) =
N∑
i=1

M∑
j=1

(xi,j − x̂i,j)2

where x̂i,1, . . . , x̂i,M are the outputs of the neural network autoencoder

13

Comments and Applications

• Since h cannot directly be measured, it is called a latent vector in a latent space.

The representation of a data point xi in latent space hi is called its representation or

embedding

• Distances in latent space are often more meaningful than in data space, so the latent

representations can be used in information retrieval

• The reconstruction error ‖x− x̂‖2 is often large for patterns which are very different

from the training data; the error thus measures novelty, anomality. This can be a basis

for fraud detection and plant condition monitoring

• The encoder can be used to pretrain the first layer in a neural network; after initializa-

tion, the complete network is then typically trained with backpropagation, including

the pretrained layer

14

Stacked Autoencoder (SAE)

• The figure represents the idea of a stacked autoencoder: a deep neural network with

weights initialized by a stacked autoencoder

15

Data Represented in a Noisy Feature Space

• The feature map might include some noise,

x = featureMap(hnat) + ~ε

where ~ε is a noise vectors; then the data might only be exactly on the manifold

• One would want that ge(featureMap(hnat) +~ε) ≈ ge(featureMap(hnat))

such that the encoder is noise insensitive; this is enforced by the denoising autoen-

coder

16

Denoising Autoencoder (DAE)

• Denoising autoencoder,

xi ← gd(ge(xi + εi))

where εi is random noise added to the input!

• This also prevents an autoencoder from learning an identity function

17

More

• Sparse autoencoders: add a penalty, e.g,
∑Mh
k=1 |hk|, to encourage sparsity of

the latent representation

• Contractive autoencoder (CAE): add a penalty, e.g,

Mh∑
k=1

M∑
j=0

(
∂hk
∂xj

)2

(squared Frobenius norm of the Jacobian); encourages mapping to a low-dimensional

manifold: small changes in x should lead to small changes in h ; the CAE has similar

advantages as the denoising autoencoder; CAE even works when Mh ≥M

18

Learning a Generator

19

Variational Autoencoder

20

Learning a Generator

• If I knew for each data point h and x, I could learn a generator ggen(·) simply by

supervised training

• Unfortunately, h is unknown

• How about I assume that h comes from a Gaussian distribution with unit variance

P (h) = N (h; 0, I) (each dimension is independently Gaussian distributed, with

unit variance)

• Goal: any sample h from this Gaussian distribution should generate a valid x (this

was not enforced in the normal autoencoder)

• This is the idea behind the Variational Autoencoder (VAE)

22

Generating Data from the VAE

• After training, we generate a new x by first generating a sample hs from N (0, I);

then

x = ggen(hs,v)

Here, v are parameters of the generator ggen(·)

• Thus generating a new x is trivial, but how do I learn the ggen(·)?

23

Training the VAE

• Training with a maximum likelihood approach is infeasible; one uses a mean field

approximation, a special case of a variational approximation; details can be found in

the Appendix

• For each data point x, one learns the variational parameters, mean µu(x) and co-

variance matrix Σu(x) as a function of x (e.g., with a deep neural network with

weights u); this is the encoder

• A sample hs is generated from N (µu(x),Σu(x)) (which is an approximation to

P (h|x)); thus instead of transmitting the prediction of the encoder µu(x) to the

decoder, we transmit a noisy version of µu(x)

• Based on this sample all parameters (v, u) are adapted with backpropagation

• Then one proceeds with the next data point

• Details can be found in the Appendix

Attribute-specific Data Manifold

• There might be different manifolds for each attribute

24

Conditional Variational Autoencoders

• Conditional Variational Autoencoders

• The generator becomes attribute sensitive, µu(x), Σu(x)→ µu(x, Attr), Σu(x, Attr)

• For generation,

x = g
gen
v (h, Attr)

25

Convolutional Variational Autoencoders

• The convolutional variational autoencoder uses convolutional layers

26

Generative Adversarial Networks
(GANs)

27

Generative Adversarial Networks (GANs)

• Let’s assume we have a larger number of generators available; let’s assume that

each generator generates a data set; which one is the best generator?

• The best generator might be the one where a discriminator (i.e., a binary neural

network classifier) trained to separate training data and the data from a particular

generator, cannot separate the two classes; if this is the case, one might say that

Ptrain(x) ≈ Pgen(x)

• In GAN models, there is only one generator and one discriminator and both are trained

jointly

28

Cost Function

• Discriminator: Given a set of training data and a set of generated data: the weights

w in the discriminator are updated to maximize the negative cross entropy cost

function (i.e., the log-likelihood); the targets for the training data are 1 and for

the generated data 0 (this is the same as minimizing the cross entropy, i.e. the

discriminator is trained to be the best classifier possible)

• Generator: With a given discriminator and a set of latent samples: update the

weights v in the generator, such that the generated data get closer to the classification

decision boundary: the generator is trained to minimize the negative cross entropy

cost function, where backpropagation is performed through the discriminator (this is

the same as maximizing the cross entropy)

29

Parameter Learning

• Optimal parameters are

(w,v) = arg min
v

arg max
w

cost(w,v)

where

cost(w,v) =
∑

i:xi∈train

log gdis(xi,w)+
∑

i:xi∈gen

log[1−gdis(ggen(hi,v),w)]

• This can be related to game theory: The solution for a zero-sum game is called a

minimax solution, where the goal is to minimize the maximum cost for the player,

here the generator. The generator wants to find the lowest cost, without knowing

the actions of the discriminator (in two-player zero-sum games, the minimax solution

is the same as the Nash equilibrium.)

30

Illustration

• Consider the following figure; h is one-dimensional Gaussian distributed: P (h) =

N (h; 0,1), Mh = 1

• The generator is x = hv, where M = 2; the data points are on a 1-D manifold in

2-D space; here: v1 = 0.2, v2 = 0.98

• The training data are generated similarly, but with x = hw and w1 = 0.98,

w2 = 0.2

• The discriminator is y = sig(|x1|w1+|x2|w2), withw1 = 0.71, w2 = −0.71

• After updating the generator, we might get v1 = 0.39, v2 = 0.92

• After updating the discriminator, we might get w1 = 0.67, w2 = −0.74

31

Applications

• For discriminant machine learning: Outputs of the convolutional layers of the discrim-

inator can be used as a feature extractor, with simple linear models fitted on top of

these features using a modest quantity of (image-label) pairs

• For discriminant machine learning: When labelled training data is in limited supply,

adversarial training may also be used to synthesize more training samples

32

DCGAN

• If the data consists of images, the discriminator is a binary image classifier and the

generator needs to generate images

• Deep Convolutional GAN (DCGAN): the generator and the discriminator contain con-

volutional layers and deconvolutional layers

• (Deconvolution layer is a very unfortunate name and should rather be called a trans-

posed convolutional layer)

• Radford et al. (shown below). Mh = 100; samples drawn from a uniform distribu-

tion (we refer to these as a code, or latent variables) and outputs an image (in this

case 64× 64× 3 images (3 RGB channels)

33

cGAN

• Consider that class/attribute labels are available; in a normal GAN, one would ig-

nore them; another extreme approach would be to train a different GAN model for

each class; cGAN and InfoGans are compromizes (related to the idea of Conditional

Variational Autoencoders)

• Conditional GAN (cGAN): An additional input to the generator and the discriminator

is the class/attribute label

34

cGAN Applications

• The attribites can be quite rich, e.g., images, sketches of images

• cGANs: GAN architecture to synthesize images from text descriptions, which

one might describe as reverse captioning. For example, given a text caption of a bird

such as “white with some black on its head and wings and a long orange beak”, the

trained GAN can generate several plausible images that match the description

• cGANs not only allow us to synthesize novel samples with specific attributes, they also

allow us to develop tools for intuitively editing images - for example editing the

hair style of a person in an image, making them wear glasses or making them look

younger

• cGANs are well suited for translating an input image into an output image,

which is a recurring theme in computer graphics, image processing, and computer

vision

35

Unpaired Image-to-Image Translation

• Example task: turn horses in images into zebras

• One could train a generator Generator A2B with horse images as inputs and the

corresponding zebra images as output; this would not work, since we do not have

matching zebra images

• But consider that we train a second generator Generator B2A which has zebra images

as inputs and generates horse images

• Now we can train two autoencoders

x̂horse = gB2A(gA2B(xhorse))

x̂zebra = gA2B(gB2A(xzebra))

• These constraints are enforced using the cycle consistency loss

36

CycleGAN

• CycleGAN does exactly that

• CycleGAN adds two discriminators, trained with the adversarial loss

• discriminatorA tries to classify real horses from generated horses

• discriminatorB tries to classify real zebras from generated zebras

• If the generated horses and zebras are perfect, both fail to discriminate

• Both the cycle consistency loss and the adversarial loss are used in training

• Note that the random seeds here are the images!

37

Why Not Use Classical Approaches?

• Classically, one would start with a probabilistic model P (x;w) and determine pa-

rameter values that provide a good fit (maximum likelihood)

• Examples for continuous data: Gaussian distribution, mixture of Gaussian distributions

• These models permit the specification of the probability density for a new data point

and one can sample from these distributions (typically by transforming samples for a

normal or uniform distribution; this would be the generator here)

• These approaches typically work well for low dimensional distributions, but not for

image distributions with 256×256 pixels and where data is essentially on a manifold

38

Related Approaches

• The GAN generator generates data x but we cannot easily evaluate P (x)

• In many applications it is possible to generate data but one cannot generate a likelihood

function (likelihood free methods)

• Moment matching is one approach to evaluate the quality of the simulation

39

Appendix*

40

Distribution*

• Both the VAE decoder and a GAN generator produce samples from probability distri-

butions

P (x) =

∫
N (x; g(h), ε2I)N (h; 0, I))dh

where latent features are generated from N (h; 0, I)) and where we added a a tiny

noise with variance ε2 to the generator

• With ε2 → 0, points outside the manifold will get zero probability density

• Obtaining the probability value of P (x) by the last formula is not straight forward

41

Variational Autoencoder*

• We apply mean field theory, which is a special case of a variational method

• We consider one data point with measured x

• The contribution to the log likelihood of that data point is

l(x) = logP (x) = log

∫
P (h)P (x|h)dh

The VAE assumes that P (h) = N (h; 0, I)

• With approximating density Q(h), we write

l(x) = log

∫
Q(h)

P (h)P (x|h)

Q(h)
dh

Using Jensen’s inequality

l(x) ≥
∫
Q(h)[logP (h) + logP (x|h)− logQ(h)]dh

42

Variational Autoencoder (cont’d)

• The last expression can be written as

EQ[log(P (h)P (x|h))]− EQ[logQ(h)]

or as

EQ[logP (x|h)]− EQ[logQ(h)− logP (h)]

The second term in the last equation is the same as (Kullback-Leibler divergence)

KL(Q(h)‖P (h)), so we maximize

EQ[logP (x|h)]−KL(Q(h)‖P (h))

• With a least squares cost function, the first term becomes, with hs being a sample

from P (h), ∫
Q(h) logP (x|h)dh ≈ const−

‖x− ggenv (hs)‖2

2σ2
ε

43

Variational Autoencoder (cont’d)

• The VAE assumes for the approximating distribution, Q(h) = N (h;µu(x),Σu(x)).

Then, (see Wikipedia),

KL(Q(h)‖P (h) =
1

2

(
tr (Σu(x)) + µu(x)T(µu(x)−Mh − ln det Σu(x)

)
• Reparameterization trick: since we cannot do backpropagation through the sampling,

we sample εs from N (0, I) and multiply the sample by
√

Σu(x) and add u .

44

Variational Autoencoder (cont’d)

• The overall cross entropy cost function (negative log likelihood), with a diagonal

Σu(x), and which we minimize w.r.t w and u, is for data point x

−l(x) =
1

2σ2
ε
‖x− ggenv (µu(x) +

√
Σu(x) ◦ εs)‖2

+
1

2

µ(x)Tµ(x) +
∑
j

[
Σu,j,j(x)− log Σu,j,j(x)

]
• The first term in the large bracket encourages µu(x → 0; the second term is mini-

mum if Σu,j,j = 1, ∀j

45

Variational Autoencoder (cont’d)

• Encoder: An encoder is only used in training outputs µu(x) and Σu(x).

• Decoder/Generator: To generate a new data point we sample hs from N (0, I) and

calculate g
gen
v (hs).

• See: Tutorial on Variational Autoencoders, Carl Doersch

46

