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In the lecture on basis functions, the assumption was that f(x) can be approximated

by a weighted sum of basis functions

Alternatively, it might make sense to have a preference for smooth functions: func-

tional values close in input space should have similar functional values

In the next figure it might make sense that the functional values at x; and x are

similar (smoothness assumption)

Thus, one might prefer the smooth (continuous) function in favor of the dashed

function






e One can implement smoothness assumptions over kernel functions

o A kernel function k(x;,x) = kx,(x) determines, how neighboring functional values

are influenced when f(x;) is given

e Example: Gaussian kernel



k. (x)




It turns out that there is a close relationship between kernels and basis functions:

My

k(xi,x) = kx;(x) = ) ¢j(x;)9;(x)

=1
It follows the symmetry: k(x;, X;) = kx;(X;) = k(xj,%;) = kx;(x;)
Thus: given the M basis functions, this equation gives you the corresponding kernel

(Note the kernel is a function of weighted basis functions. The weight ¢,(x;) are the

amplitudes of the basis functions at x;)

As we see later: For positive definite kernels, we can also go the other way: given the

kernels | can give you a corresponding set of basis functions (not unique)



Gaussian basis functions (continuous)

Kernel: dotted

3 T
e{,(xl) =(0.25,1.00,0.25)
g?}(xz) =(0.10,0.90,0.50)"
gsg} (x,)=(0.02,0.60,0.90)"
¢ (x,)=(0.00,0.01,0.30)"

k(x.x) =97 (x)P(x,) =1.12
k(x,x,) =97 () (x,) =1.03

k(x,,x,) = %I(xl)g%:(xj) ~0.83
k(x1=x4) = @I(xl)ﬁ(xo =0.08



e Regression
N
7(x) =) vik(x;,x)
1=1

e C(lassification

N
§(x) =sign | > vk(x;,x)
i=1

e The solution contains as many kernels as there are data points N (independent on

the number of underlying basis functions M(b)



e [hus with M¢ — 00 : | can work with a finite number IN of kernels, instead of an

infinite number of basis functions

e Thus no matter how many training data points: a perfect fit can be possible (with

A2 — 0)

e S50 in neural networks, one makes a model of basis functions more flexible by intro-
ducing hidden parameters for tuning the basis functions, with kernels one makes the

model more flexible by working with an infinite number of fixed basis functions






Kernel System

Classification

Regression




e We start with the penalized least squares cost function for models with basis functions

e Regularized cost function

N Mg My
costP(w) = Z(yi - Z wjdj ()% + A Z w]?
1=1 =1 J=1

= (y —®w) (y — dw) + \w'lw

where @ is the design matrix design with (®); ; = ¢;(x;) .



e We calculate the first derivatives and set them to zero,

pen
8cosg (w) = 28! (y — ®dw) 4+ 2 w =0
\ 4

It follows that one can write,

1
Wpen = X(I)T<y — (I)Wpen)



e This is not an explicit solution (Wpen, appears on both sides of the equation). But we

know now, that we can write the solution as a linear combination of the input vectors

N
Wpen = dly = Z ’Ui(g(xi)
1=1

e Note that we have a sum over N data points (and not M basis functions)
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e We immediately get,
My

]?(X) — Z wj,penqu (x;) = g(X)TWpen

7=1

N
=¢(x) @'V =>" vik(x;,x)

1=1
with v = (v1,...,vx)L and
My,
k(x;,x) = ()T d(x) = ) p(x) dp(x)
k=1

e But note that not all functions that can be represented by the basis functions can be
written in this form, only the functions that minimize the cost function!
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e We can substitute the constraints, and obtain as a cost function with kernel weights
as free parameters

costP’(v) = (y — ®® V) (y — ®#d'v) + 2wl ddly

=(y— Kv)I(y = Kv) + 2WlKv

Explicitly

N

2
N N N
costPe(v) = Z Yi — Z vik(z;, ;) | + A Z Z vivik (a4, ;)

i=1 j=1 i=1j=1

Here K is an N X IN matrix with elements
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My

ki = o(x) o(x;) = PIRIACHIINESY

k=1

e An important result: We can write the cost function, such that only dot
products of the basis functions appear (i.e., the kernels), but not the
basis functions themselves!



e Now we can take the derivative of the cost function with respect to v (note, that
K = KT
dcostPe (v)

=2K(y — Kv) +2)\Kv
ov

such that
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e A prediction can be written as (w, v are the penalized least squares solutions)

N
Fx) =o(x)'w=¢x) v =) vik(x;,x)
1=1
with

k(xi,%) = ¢(x) (x)

e Another important result: we can write the solution such that only dot products are
used; the solution can be written as a weighted sum of N kernels.

e We want to point out again, that not each function that can be written as Zj w;p;(x)
can be expressed in this way, only a subset of the functions and in particular that one

which minimizes the cost function based on the specific N training data points!
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e With only one training data point we get

f(x) = vik(x1,%)
e As discussed previously:

k, (%)
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CC: Computationally, kernel approaches can deal with functions in high dimensions
and with a high bandwidth! Computation scales as N3, independent of M

If data are on a low-dimensional manifold in high dimensions, Gaussian kernels would
be placed on the manifold and the kernel width can be adapted to fit the complexity
of the function on the manifold (Case Ib (manifold))

Thus egpf can also be quite small for test data points on the manifold

Outside the manifold, f(x) — O and e4f can be quite large; kernel solutions might
not perform well when the test data is not on the same manifold
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By design, Gaussian kernels are
placed on the manifold.

They implicitly perform a
dimensionality reduction (by placing
themselves on the manifold),
followed by a mappinginto infinite
basis function space (by the
kernels).
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e Using the same argument, kernel systems might perform well in one-class classification

(one only has data points for class 1 and not data points for class 0)

e The kernel prediction in regions of input space on or closer to the manifold will be

larger that in regions of input space far away from the manifold

e Thus if the prediction of a test data point gives an output >> O, the data point is

“normal”, if the output ~ O, the data point might be an outlier (abnormal, novel)

e This can be employed in condition monitoring
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e This is interesting, since there can be more basis functions than data points; in partic-

ular this result is valid, even if we work with an infinite number of basis functions!

e |t is even possible to start with the kernels, without knowing exactly, what the under-
lying basis functions are
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e A dot product between to data points in input space is

M
T —
Xi Xi’ = Z mi,jxi’,j
j=1

which is the linear kernel
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e A dot product between two data points in basis function space is

My

d(x) d(xy) = D iz (xp) = k(xg, %)

j=1

and this is exactly the kernel which belongs to this basis function space!
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e Assume that the prior distribution of of the basis function weights has a zero mean

and a unit covariance

w ~ N (0, TI)

e [hen the functions have zero mean and a covariance of
cov(f(x;), f(x;)) = cov(¢’ (x;)w, ¢! (x;)w) = &' (x;) cov(w)p(x;)
= k(x;,X%;)

e This interpretation is used in Gaussian processes: the kernel represents the covariance

between the function values, evaluated at different inputs
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e When N >> My it is computationally more efficient to work with basis functions
(requiring Mé;’ + Mq%N operations). When My >> N, the kernel version is more

efficient, requiring N3 + N2M¢ operations. If the kernels are known a priori (i.e.,

if they do not need to be calculates via dot product), the kernel solution requires N3
operations.
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e Still, not all functions are valid kernel functions. Mercer's theorem addresses that

Issue
e (From Vapnik: The nature of statistical learning theory. Springer, 2000)

e Mercer's Theorem: To guarantee, that the symmetric functions k(x,z) = k(z, X)

from Lo permits an expansion as

k(z,x) = > Aoy (2)dp(x)

h=1

with positive coefficients A;, > O, it is necessary and sufficient, that

//k(z,x)g(x)g(z)dxdz >0
for all g #= O, for which

[ PP (yix < o
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e The theorem says, that for so-called positive-definite kernels (“Mercer kernels”), a

decomposition in basis functions is possible!

e Each kernel-matrix K is then also positive definite, al Ka > 0, for all vectors

a #= 0. A symmetric matrix is positive definite iff all its eigenvalues are positive

e The results also generalize to the non-negative (positive-semidefinite) case



e Linear Kernel
k(x;,x) = X,LTX

The kernel matrix is then K = X X' (Recall that the empirical correlation between
the input dimensions is X1 X)

e Polynomial kernel (1)
b(xi, %) = (xFx)"
The basis functions are all ordered polynomials of order d

e Polynomial kernel (2)
k(x;,x) = (x{ x + R)*

The corresponding basis functions are all polynomials of order d or smaller. R is a

tuning parameter
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e GauB-kernels (RBF-kernels)

1 2
k(x;,X) =exp | —=||x; — X
(%) = &0 (=5 5l1xi — x1
These kernels correspond to infinitely many Gaussian basis functions

e Sigmoid (“neural network”) kernels

k(x;,x) = sig (X,‘Z-TX)



Kernels do not need to look symmetrical: linear kernel in 1-D

k(xf: x) = xz'.:f

2
-t

k "-:2_" —
(=29 k(v =Lx)=x

* k(x;=0,x)=0

R 5 — I
Symmetry: k(1,2) = k(1,2) = 2 k(x; =—0.5.x) = -0.5x



A necessary condition is that k(x;,X;) = k(x;,X;)!

So any function of ||x; — X ;|| would be a good candidate. These kernels also appear

symmetrical, like a Gaussian kernel

But note that also any function of ||X;-rxj|| would be a good candidate. They don't

necessarily look symmetrical, like the linear kernel or the polynomial kernel
Here is an example of a kernel that violates the necessary condition
k(xi, %;) = x; % + al|x]|°
The kernels discussed here are called dot-product kernels, Mercer kernels, or kernels

in a reproducing kernel Hilbert space

Kernels are widely used in mathematics. The kernels used here should, for example,

not to be confused with the kernels used in kernel smoothing!
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e Example: Classification of chemical graphs

— Molecules can be described as graphs (structural formula, chemical graph theories)

— Task: | know from N molecules, if these have a particular medical effect (training

data). Can | predict the medical effect of a new molecule?

— Features which describe a chemical structure formula are difficult to describe; it

is easier to define graph kernels
e Example: Classification of a person in a social network

— Kernels reflect similarity with respect to a network topology. For example, one can
define a kernel based on the number of overlapping substructures of two persons

in their mutual neighborhoods
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® Representer Theorem: Let {2 be a strictly monotonously increasing function and let
l0SS() be an arbitrary loss function, then the minimizer of the loss function

N
Z loss(y;, f(x;)) + 2([If]]4)

=1

can be represented as

N
F(x) =) vik(x4,x)
i=1

o |Iffl, = /(f, f>¢ is a norm in a reproducing kernel Hilbert space (RKHS) and

includes [|f||, = wlw

e 50 kernel solutions are possible for all cost functions we are considering!
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