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Learning Machine: The Linear Model / ADALINE

• As with the Perceptron we start with

an activation functions that is a linearly

weighted sum of the inputs

h =
M∑
j=0

wjxj

(Note: x0 = 1 is a constant input, so

that w0 is the bias)

• New: The activation is the output

(no thresholding)

ŷ = fw(x) = h

• Regression: the target function can take

on real values
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Method of Least Squares

• Squared-loss cost function:

cost(w) =
N∑
i=1

(yi − fw(xi))2

• The parameters that minimize the cost function are called least squares (LS) estimators

wls = arg min
w

cost(w)

• For visualization, we take M = 1 (although linear regression is often applied to

high-dimensional inputs)
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Least-squares Estimator for Regression

One-dimensional regression:

fw(x) = w0 + w1x

w = (w0, w1)T

Squared error:

cost(w) =
N∑
i=1

(yi − fw(xi))2

Goal:

wls = arg min
w

cost(w) w0 = 1, w1 = 2, var(ε) = 1
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Least-squares Estimator in Several Dimensions

General Model:

ŷi = fw(xi) = w0 +
M∑
j=1

wjxi,j

= xTi w

w = (w0, w1, . . . wM)T

xi = (1, xi,1, . . . , xi,M)T
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Linear Regression with Several Inputs
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Contribution to the Cost Function of one Data Point
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Predictions as Matrix-vector product

The vector of all predictions at the training data is

ŷ =


ŷ1
ŷ2
. . .
ŷN

 = Xw
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Gradient Descent Learning

• Initialize parameters (typically using small random numbers)

• Adapt the parameters in the direction of the negative gradient

• With fw(xi) =
∑M
j=0wjxi,j

cost(w) =
N∑
i=1

(yi − fw(xi))2

• The parameter gradient is (Example: wj)

∂cost

∂wj
= −2

N∑
i=1

(yi − fw(xi))xi,j

• A sensible learning rule is

wj ←− wj + η

N∑
i=1

(yi − fw(xi))xi,j
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ADALINE-Learning Rule

• ADALINE: ADAptive LINear Element

• The ADALINE uses stochastic gradient descent (SGD)

• Let xt and yt be the training pattern in iteration t. The we adapt, t = 1,2, . . .

wj ←− wj + η(yt − ŷt)xt,j j = 0,1,2, . . . ,M

• η > 0 is the learning rate, typically 0 < η << 0.1

• This is identical to the Perceptron learning rule. For the Perceptron yt ∈ {−1,1},
ŷt ∈ {−1,1}
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Analytic Solution

• The ADALINE is optimized by SGD

• Online Adaptation: a physical system constantly produces new data: the ADALINE

(SGD in general) can even track changes in the system

• With a fixed training data set the least-squares solution can be calculated analytically

in one step (least-squares regression)
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Cost Function in Matrix Form

cost(w) =
N∑
i=1

(yi − fw(xi))2

= (y −Xw)T (y −Xw)

y = (y1, . . . , yN)T

X =

 x1,0 . . . x1,M
. . . . . . . . .
xN,0 . . . xN,M


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Necessary Condition for an Optimum

• A necessary condition for an optimum is that

∂cost(w)

∂w

∣∣∣∣
w=wopt

= 0
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One Parameter: Explicit

• fw(x1) = x1w1 and cost(w1) =
∑N
i=1(yi − xi,1w1)2

• (chain rule: inner derivative times outer derivative)

∂cost(w1)

∂w1
=

N∑
i=1

∂(yi − xi,1w1)

∂w1
2(yi − xi,1w1)

= −2
N∑
i=1

xi,1(yi − xi,1w1) = −2
N∑
i=1

xi,1yi + 2w1

N∑
i=1

xi,1xi,1

• Thus

w1,ls =

 N∑
i=1

xi,1xi,1

−1
N∑
i=1

xi,1yi
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One Parameter: in Vector Notation

• fw(x1) = x1w1 and cost(w1) = (y − x̄1w1)T (y − x̄1w1), where x̄1 =

(x1,1, . . . , xN,1)T

• (chain rule: inner derivative times outer derivative)

∂cost(w1)

∂w1
=
∂(y − x̄1w1)

∂w1
2(y − x̄1w1)

= −2x̄T1 (y − x̄1w1) = −2x̄T1y + 2w1x̄
T
1 x̄1

• Thus

w1,ls =
(
x̄T1 x̄1

)−1
x̄T1y
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General Case

• fw(x) = xTw and cost(w) = (y −Xw)T (y −Xw)

• (chain rule: inner derivative times outer derivative)

∂cost(w)

∂w
=
∂(y −Xw)

∂w
2(y −Xw)

= −2XT (y −Xw) = −2XTy + 2wXTX

• Thus

wls =
(
XTX

)−1
XTy
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Setting First Derivative to Zero

ŵls = (XTX)−1XTy

Complexity (linear in N):

O(M3 +NM2)

ŵ0 = 0.75, ŵ1 = 2.13

17



Derivatives of Vector Products

• We have used

∂

∂x
Ax = AT ∂

∂x
xTx = 2x

∂

∂x
xTAx = (A + AT )x

• Comment: one also finds the conventions,

∂

∂x
Ax = A

∂

∂x
xTx = 2xT

∂

∂x
xTAx = xT (A + AT )
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Stability of the Solution

• When N >> M , the LS solution is stable (small changes in the data lead to small

changes in the parameter estimates)

• When N < M then there are many solutions which all produce zero training error

• Of all these solutions, one selects the one that minimizes
∑M
j=0w

2
j = wTw (reg-

ularised solution)

• Even with N > M it is advantageous to regularize the solution, in particular with

noise on the target
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Linear Regression and Regularisation

• Regularised cost function (Penalized Least Squares (PLS), Ridge Regression, Weight

Decay): the influence of a single data point should be small

costpen(w) =
N∑
i=1

(yi − fw(xi))2 + λ

M∑
j=0

w2
j

ŵpen =
(
XTX + λI

)−1
XTy

Derivation:

∂costpen(w)

∂w
= −2XT (y −Xw) + 2λw = 2[−XTy + (XTX + λI)w]
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ADALINE-Learning Rule with Weight Decay

• Let xt and yt be the training pattern in iteration t. Then we adapt, t = 1,2, . . .

wj ←− wj + η[(yt − ŷt)xt,j −
λ

N
wj] j = 0,1,2, . . . ,M
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Toy Example: Unidimensional Model (Pearson Correlation
Coefficient)

• We generated N = 100 data points with M = 3 inputs (no bias)

• x1 and x2 are highly correlated. x3 is independent from x1, x2, and y

• We generate output data with y = x1+ε, where ε stands for independent noise with

standard deviation 0.2 and thus variance of 0.04. Thus ground truth parameters are

wtrue = (1,0,0)T . Note that, y causally only depends on x1

• All variables are normalized to 0 mean and variance 1.

• In unit dimensional models, with only one input, the weights are identical to the sample

Pearson correlation coefficients (here: rj =
∑
i yixi,j/N) between the output and

the input, I get r1 = 0.99, r2 = 0.96, r3 = −0.21.
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Toy Example: Unidimensional Model (Pearson Correlation
Coefficient) (cont’d)

• Explicitly the three models are

ŷ = 0.99x1

ŷ = 0.96x2

ŷ = −0.21x3

• A deeper analysis reveals that the estimate r1 has a mean of 1 and a standard

deviation of 0.02. r1 reflects the dependency of y on x1

• The second coefficient, r2 = 0.96, does not reflect a causal effect, but reflects the

fact that x1 and x2 are highly correlated, and thus also y and x2 (correlation does

not imply causality). A deeper analysis reveals that with perfect correlation between

x1 and x2, the estimate r1 also would have a mean of 1 and a standard deviation

of 0.02
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• The third value r3 is correctly closer to 0, but not really small in magnitude. A deeper

analysis reveals that the estimate r3 has a mean of 0 and a standard deviation of

approximately of 0.1



Toy Example: Least Squares Regression

• We get:

XTX =

 100 98 −18
98 100 −16
−18 −16 100


Approximately Ncov(x); we see the strong correlation between x1 and x2

(XTX)−1 =

 0.255 −0.249 0.007
−0.249 0.253 −0.005
0.007 −0.005 0.010


Finally,

XTy = (99,97,−20)T

This is approximately Nr; we see the strong correlation between both x1 and x2

with y
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Toy Example: Least Squares Regression (cont’d)

• We get

wls = (XTX)−1XTy = (1.137,−0.150,−0.018)T

• Interestingly, linear regression pretty much identifies the correct causality, withwls,1 ≈
1 and wls,2 ≈ 0 !

• A deeper analysis reveals that wls,1 has a mean of 1 and a standard deviation of 0.1.

So the estimator is unbiased but the uncertainty is larger then in the unit dimensional

analysis

• wls,2 has mean of zero and a standard deviation of 0.1. Thus the bias is removed

if compared to Pearson!

• wls,1 and wls,2 are negatively correlated. Note, that wls,1 + wls,2 = 0.987

which is close to the true 1.
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Toy Example: Least Squares Regression (cont’d)

• wls,3 = −0.018 is much closer to 0 than the sample Pearson correlation coefficient

r3 = −0.21

• A deeper analysis (see Appendix) reveals that wls,3 has a mean of 0 and a standard

deviation of 0.02. Here it is important to see that the standard deviation of the

spurious input is largely reduced!

• Overall, in regression, the causal influence of x1 stands out much more clearly! Both

the influence of the correlated input x2 and the noise input x3 are largely reduced

• Application in healthcare: Same data. Consider that x2 is a medication and y the

outcome. If I do a unidimensional analysis, I would see a strong positive influence of

x2 on y (the medication works). Only if I include the so-called confounder x1 in the

regression model, it becomes clear that the confounder x1 is the cause and not the

treatment x2. The treatment has no significant effect!
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The Power of Supervised Learning

• Consider that I can write the cost function as
∑
i([yi−w1xi,1−w2xi,2]−w3xi,3).

Thus w3xi,3 only needs to fit the residual target [yi − w1xi,1 − w2xi,2] instead

of the original target yi

• Of course this is true for any input: an input only has to model, what the other inputs

could not model

• This is in contrast to a unidimensional analysis, where each input on its own tries to

model the dependency to y as well as possible!
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Toy Example: Penalized Least Squares Regression

• We get with λ = 0.6:

XTX + λI =

 100.6 98 −19
98 100.6 −17
−19 −17 100.6



(XTX + λI)−1 =

 0.197 −0.191 0.005
−0.191 0.195 −0.003
0.005 −0.003 0.010



XTy = (99,97,−20)T

wpen = (XTX + λI)−1XTy = (0.990,−0.005,−0.021)T

• Note that wpen,2 is even closer to ground truth!
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Remarks: Correlation versus Regression

• The Pearson coefficient is independent of context, objective. Karl Pearson: “I in-

terpreted that sentence of Francis Galton (1822-1911) [his advisor] to mean that

there was a category broader than causation, namely correlation, of which causation

was only the limit, and that this new conception of correlation brought psychology,

anthropology, medicine, and sociology in large parts into the field of mathematical

treatment.”

• But the The Pearson correlation coefficient does not reflect causality (dependencies)

• The regression coefficients display causal behavior, much more closely
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Remarks: Regularization

• If one is only interested in prediction accuracy: adding inputs liberally in regression
can be beneficial if regularization is used (in ad placements and ad bidding, hundreds
or thousands of features are used)

• The weight parameters of useless (noisy) features become close to zero with regular-
ization (ill-conditioned parameters)

• Regularization is especially important when N ≈M , or when N < M

• If parameter interpretation is essential or if, for computational reasons, one wants to
keep the number of inputs small:

• — Forward selection; start with the empty model; at each step add the input that
reduces the error most

• — Backward selection (pruning); start with the full model; at each step remove the
input that increases the error the least

• But no guarantee, that one finds the best subset of inputs or that one finds the true
inputs

30



Experiments with Real World Data: Data from Prostate Cancer
Patients

8 Inputs, 97 data points; y: Prostate-specific antigen

10-times cross validation error
LS 0.586

Best Subset (3) 0.574
Ridge (Penalized) 0.540
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Examples where High-dimensional Linear Systems are Used

• Ranking in search engines (relevance of a web page to a query)

• Ad placements: where to put which ad for a user

• GWAS
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Genome-wide Association Study (GWAS)

• Trait (here: the disease systemic sclerosis) is the output and the SNPs are the inputs

• The major allele is encoded as 0 and the minor allele as 1. Thus wj is the influence

of SNP j on the trait.

• Shown is the (log of the p-value) of wj ordered by the locations on the chromosomes.

The weights can be calculated by penalized least squares (ridge regression)

• Solely based on the Pearson correlation, the plot would show many more (non-causal)

associations. The regression analysis reduces the apparent influence of noncausal

correlated inputs and the influence of uncorrelated inputs

• In practice one often uses an elastic net penalty: λ2
∑
j w

2
j + λ1

∑
j |wj| where

the lasso penalty λ1
∑
j |wj| increases sparsity
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Uncorrelated Inputs

• With uncorrelated inputs, we can train for each input separately, and obtain for each

j

ŷ = w0,j + w1,jxj

• We can then combine and obtain

ŷ = w0 +
∑
j

w1,jxj

where

w0 =
1

M

∑
j

(w0,j − w1,jx̄j)

where x̄j is the mean of xj
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Appendix: A Deeper Analysis of Pearson versus Regression*

Pearson

• The Pearson correlation coefficient is in the mean approximately (1,1,0). The

variance of r1, and r2 can be estimated as var = σ2/N = 0.04/100 = 0.0004

and standard deviation stdev =
√

var = 0.02 (we use the true noise variance

here; N = 100).

• For r3 we get a variance var(r3) = var(y)/N = 1/N = 0.01, and a standard

deviation of stdev(r3) = 0.1; here we set var = 1, since for x3 all data appears

as noise

• Comment: r2 does not reflect the true dependency; the variance of r3 is relatively

large.

Regression
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• Since linear regression is unbiased, the parameter estimates have mean 1,0,0 (unbi-

ased solutions). We get for the covariances

cov(wls) = σ2(XTX)−1

The variances are then (we consider the diagonal terms)

var(wls,1) = var(wls,2) ≈ 0.04× 0.25 = 0.01

var(wls,3) ≈ 0.04× 0.01 = 0.0004,

and

stdev(wls,1) = stdev(wls,2) ≈ 0.1

stdev(wls,3) ≈ 0.02

• Thus the estimates are unbiased; the uncertainty of wls,3 is greatly reduced and thus

closer to zero!


