Exercise 4-1 ‘The Simpsons’ Characters Classification in Tensorflow

The provided notebook on the website leads you through a classification task of the main characters of the TV-series ‘The Simpsons’. Therefore, we will use the ‘The Simpsons Characters Data’ from kaggle.com, provided by the user alexattia. The original source of the dataset can be found here: https://www.kaggle.com/alexattia/the-simpsons-characters-dataset

In a previous exercise, you implemented and trained a neural network for this task using the high-level API Keras. This time we will implement the classifier in Tensorflow.

Exercise 4-2 Manifold Learning - Locally linear embedding

In locally linear embedding, we assume that data lies on a manifold, where each sample and its neighbors lie on an approximately linear subspace. The idea is to approximate the data by a set of linear patches. This local geometry of these patches can be characterized by linear coefficients that reconstruct each data point from its neighbors. The algorithm consists of three steps:

- For each x_i, find the k nearest neighbors
- find the weight matrix W minimizing the error for reconstructing each x_i from its neighbors. The cost function is given by:

$$E(W) = \sum_{i=1}^{n} ||x_i - \sum_{j\neq i} w_{ij}x_j||^2$$ \hspace{1cm} (1)

where $w_{ij} = 0$ unless x_j is one of X_i’s k-nearest neighbors. For each i, $\sum_j w_{ij} = 1$.

- Find the coordinates Y minimizing the reconstruction error using the weights calculated in step 2, i.e.,

$$\Phi(Y) = \sum_{i=1}^{n} ||y_i - \sum_{j\neq i} w_{ij}y_j||^2$$ \hspace{1cm} (2)

subject to the constraint that $\sum_i y_{ij} = 0$ for each j and that $Y^TY = I$.

(a) Under which conditions can we achieve an error of $E(W) = 0$? What is the conclusion for the low-dimensional and high-dimensional embedding space w.r.t. to the weights?

(b) Show that the constraint of $\sum_j w_{ij} = 1$ is sufficient to be invariant towards translations w.r.t each input vector x_i.

(c) What happens if k, the number of neighbors, is greater than p, the number of features?
(d) Formulate a optimization problem on how to stabilize the problem in the case on $k > p$.

Exercise 4-3 Generative Adversarial Networks (GANs)

(a) Provide a short and intuitive, non-formal description of a GAN. What is the main idea? What are the individual components of the model and how do they interact?

(b) What are possible applications for a GAN?

(c) Name at least two different variations of the GAN model and provide a possible application for each.

Exercise 4-4 Optimal Solution of a GAN

Recall from the lecture the idea of Generative Adversarial Networks (GANs):

A generator g is trained to produce samples $x = g(h; \theta_g)$. The idea is that the generator performs especially well, i.e. closely approximates the real data distribution $p_{data}(x)$, if a discriminator $d(x; \theta_d)$ is not able to separate the samples produced by g from real samples from $p_{data}(x)$. Both, generator and discriminator, are usually multi-layer perceptrons, such the θ_g and θ_d represent their respective weights. We will omit these parameters in the following for brevity. In a GAN, both networks are trained jointly to perform their respective tasks as good as possible:

$$(\theta^*_g, \theta^*_d) = \arg\min_g \arg\max_d V(g, d)$$

where

$$V(g, d) = \mathbb{E}_{x \sim p_{data}} [\log d(x)] + \mathbb{E}_{h \sim p_h} [\log (1 - d(g(h)))]$$

Intuitively, the discriminator attempts to classify the samples correctly as real or fake by maximizing the negative cross-entropy. The generator on the other hand attempts to minimize the negative cross-entropy with the goal of fooling the discriminator into believing that its generated samples are real.

In the following, we want to partly proof the following statement:

At the unique global optimum, $p_g(x) = p_{data}(x)$ and $d(x) = 1/2$ everywhere.

Though the full proof is not particularly difficult, we skip the last part due to time reasons. A nicely worked out, detailed proof is also provided by Scott Rome.\footnote{https://srome.github.io/An-Annotated-Proof-of-Generative-Adversarial-Networks-with-Implementation-Notes/}

Note that in practice the GAN is trained on finite batches of training samples and generated samples using a gradient-based learning rule. One can show that training converges given enough training data and certain other conditions. However, training GANs can be difficult in practice and is actively researched.

(a) Given a fixed g, what is the optimal discriminator d^*_g?

Hint: We can write V as

$$V(g, d) = \int_x p_{data}(x) \log d(x) dx + \int_h p_h(h) \log(1 - d(g(h))) dh$$

$$= \int_x p_{data}(x) \log d(x) + p_g(x) \log (1 - d(x)) dx$$
Further, for any $a, b \in \mathbb{R}$, $a + b > 0$, the function

$$y \rightarrow a \log y + b \log(1 - y)$$

attains its maximum in $[0, 1]$ at $\frac{a}{a+b}$.

(b) Given a fixed generator g^* such that $p_{g^*} = p_{data}$, what is the optimal discriminator d^*? What is the value of $V(g^*, d^*)$?

(c) What is left to show for a full proof of the above statement?