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e Predict single output y based on weighted sum of input X (design matrix)

e Many inputs and one output




e Predict multiple outputs Y as on weighted sums of input X (design matrix)

e Many inputs and many outputs




e Now we assume that the inputs X are also unknown

e We change the notation and write A = X and B = W1 and get

BT




e Each row of Y corresponds to a user, each column of Y corresponds to a movie and

y; j is the rating of user ¢ for movie j

e Thus the 2-th row of A describes the latent attributes or latent factors of the :th
user and the j-th row of B describes the latent attributes or latent factors of the

movie associated with the j-th movie



e To find A and B we can define a least-squares cost function with regularisation terms
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Here R is the set of existing ratings, r (rank) is the number of latent factors, and A

is a regularization parameter

e Note, that the cost function ignores movies which have not been rated yet and treats
them as missing

e A and B are found via stochastic gradient descent

e After convergence, we can predict for any user and any movie

.
Ui j = Z a; kbj k
k=1



e Matrix factorization was the most important component in the winning entries in the

Netflix competition

e Note that the ¢-th row of A contains the latent factor of user ¢ (capturing coordinated
variation across movies) and the j-th row of B contains the latent factors of movie j

(variation across users)
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Figure 2. A simplified illustration of the latent factor approach, which

characterizes both users and movies using two axes—male versus female
and serious versus escapist.
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Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
data. Selected movies are placed at the appropriate spot based on their factor

vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent films.




So far we started with Y ~ ABY', i.e., we factorized the output matrix and were

interested in the latent factors of rows and columns to reconstruct missing values in

Y

In other regression/classification tasks it makes sense to factorize the design matrix
X as

X ~ ABT

This is a form of dimensional reduction, if r < M

As we will see later, a classifier with A as design matrix can give better results than
a classifier with X as design matrix. Example: X has many columns and is extremely

sparse, A might have a small number of columns and is non-sparse
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e Compute latent factors A as weighted sum of inputs X

A=XV

® Then reconstruct X from latent factors A
X ~ XVBT

or

X; R BVTXi

e Thus if X is complete, we can learn the factorization via an autoencoder






The factorization approach as described is not unique and it has only been recently
used in machine learning

More traditional is the factorization via a principal component analysis (PCA)

Transform correlated observations X into set of orthogonal latent variables that (ite-
ratively) maximize the variance of the latent factors

With A — Z and B — V we get
X = ZTVTT

The i-th row of A contains the r principal principal components of © (new name for
the latent factors). With » = min(M, N) the factorization is without error. With
r < min(M, N) this is an approximation

The decomposition is unique and is optimal for any r with respect to the cost function
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e \We will now derive the solution

Scores/principal Weights/loadings
components (principal vectors)
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e We want to compress the M-dimensional X to an r—dimensional z using a linear

transformation

e \We want that x can be reconstructed from z as well as possible in the mean squared

error sense for all data points x;
T
> (x5 = Viz) ' (x; — Vizy)
1

where Vi is an M X r matrix.

e \We want the columns of V' to be orthonormal
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® Let's first look at » = 1 and we want to find the vector v

e We require that ||v]| =1

e The reconstruction error for a particular x; is given by

(x; — %) (% — %) = (x5 — vz) !t (x5 — vz).

The optimal z; is then (see figure)

Thus we get
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e So what is v? We are looking for a v that minimized the reconstruction error over all

data points. We use the Lagrange parameter A to guarantee length 1

N
L = Z(VvTxi —x) T (vlx; —x) + A(viv —1)
1=1

= Z XTVV vvlx; 4+ XiTXZ- — X;-FVVTXZ — XTVVTX,L +a(viv-1)

—ZX XZ—X vwix, + A(viv—1)
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e The first term does not depend on v. We take the derivative with respect to v and
obtain for the second term

g%X?VVTXi
0 0
= ST x) =2 (9% (¢

= 2x;(vlx;) = 2XZ‘(X;-FV) = 2(X7;X;-F)V

and for the last term

)\QVTV = 2)\V
ov

e We set the derivative to zero and get

N
Z XZ'XEL-TV = AV
1=1
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or in matrix form

where = = X1 X
e Recall that the Lagrangian is maximized with respect to A

e Thus the first principal vector v is the first eigenvector of > (with the largest eigen-

value)

® z; = VTXi is called the first principal component of x;



The second principal vector is given by the second eigenvector of 2_ and so on

For a rank r approximation we get

Here, the columns of V/- are all orthonormal and correspond to the r eigenvectors of

2_ with the largest eigenvalues

The optimal reconstruction is

7; — ‘/TTXZ'
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e Minimizing the reconstruction error (as in our derivation) turns out to be equivalent

to maximizing the variance

e First PC has largest possible variance, each succeeding PC has the highest variance

possible under the constraint that it is orthogonal to all preceding components.
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e > is (proportional to) the sample covariance matrix
e PCs are eigenvectors of >_

e \We diagonalize 2_ via eigenvalue decomposition, with eigenvalues being the values on

the diagonal
e Sum of diagonal remains the same as for sample covariance matrix

e Relative magnitude of eigenvalue corresponds to relative variance explained by specific

PC

17



PCA Applications

18



e First perform an PCA of X and then use as input to the classifier z; instead of x;,

where

z; = V,'x;

19
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e A distance measure (Euclidian distance) based on the principal components is often

more meaningful than a distance measure calculated in the original space

e Novelty detection / outlier detection: We calculate the reconstruction of a new vector
x and calculate

T _ T
[x = ViV x|| = ||V=x|]
If this distance is large, then the new input is unusual, i.e. might be an outlier

e Here V_, contains the M — r eigenvectors V.4 1, ..., vy of 2

20



PCA Example: Handwritten Digits

21



e 130 handwritten digits “ 3 " (in total: 658): significant difference in style

e The images have 16 X 16 grey valued pixels. Each input vector x consists of 256

grey values of the pixels: applying a linear classifier to the original pixels gives bad

results
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e We see the first two principal vectors v, vo
e V1 prolongs the lower portion of the “3"

e vo modulates thickness
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e For different values of the principal components z1 and z5 the reconstructed image

is shown

X = m—|—Z1V1 —|—22V2

® I is a mean vector that was subtracted before the PCA was performed and is now

added again. m represents 256 mean pixel values averaged over all samples
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Eigenfaces: similarity search of
images
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PCA for face recognition
http:/ /vismod.media.mit.edu/vismod /demos/facerec/basic.html
7562 images from 3000 persons

X; contains the pixel values of the ¢-th image. Obviously it does not make sense to
build a classifier directly on the 256 x 256 = 65536 pixel values

PCs (Eigenfaces) were calculated based on 128 images (training set)
For recognition on test images, the first » = 20 principal components are used

Almost each person had at least 2 images; many persons had images with varying

facial expression, different hair style, different beards, ...

26
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e The upper left image is the test image. Based on the Euclidian distance in PCA-space
the other 15 images were classified as nearest neighbors. All 15 images came form the

correct person.
e Thus, distance is evaluated following

1z — 2]
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e 200 pictures were selected randomly from the test set. In 96% of all cases the nearest

neighbor was the correct person

28



e Sometimes the mean is subtracted first

Ti,j = Ti,j — My

where
N

1
mj == D i
1=1

e X now contains the centered data

e Centering is recommended when data are approximately normally distributed

29



o Let

then

with m = (m1,

30






PCA and Singular Value
Decomposition
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Any N x M matrix X can be factored as

X =UDv?!

where U and V' are both orthonormal matrices. U is an N X N Matrix and V is
an M x M Matrix.

D is an N x M diagonal matrix with diagonal entries (singular values) d; >
0,i=1,...,7, with7 = min(M, N)

The u; (columns of U) are the left singular vectors
The v are the right singular vectors

The d; are the singular values

32
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e \We get for the empirical covariance matrix

1 1 1 1
> =_xT"x=_vpTuTupv? = ZvDTDVT = —vDy,v7
N N N N

e And for the empirical kernel matrix

1 1 1 1
K=-—xx"=_—vupv!'vp'u!l = —upp'v! = —ubDyU"
M M M M

e With

1 1
SV =-VD, KU=—UD
N Y MoB

one sees that the columns of V' are the eigenvectors of 2_ and the columns of U are

the eigenvectors of K: The eigenvalues are the diagonal entries of Dy, respectively
Dy;.

33



e The square root of the eigenvalues of X1 X are the singular values of X

e The columns of V' are both the principal vectors and the eigenvectors



e TheSVD is

from which we get

X =UDv?

X =vUlx

X =Xxvv7T

34



e In the SVD, the d; are ordered: di > do > d3... > dz. In many cases one can
neglect d;,©+ > r and one obtains a rank-r Approximation. Let D, be a diagonal

matrix with the corresponding entries. Then we get the approximation

X =U,D VI
X =U,U'Xx
X =xv.vl

where U, contains the first r columns of U. Correspondingly, V-

35



e The approximation above is the best rank-r approximation with respect to the squared

error (Frobenius Norm). The approximation error is

N M G
SN2 2
2.2 (w37 = ), 4

i=1j=1 j=r+1
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e Recall that in the netflix example on matrix factorization with X ~ AB’ the rows
of A contained the factors for the users and the rows of B contained the factors for

the movies

e |n the PCA, factors for entities associated with the columns are the rows of

T. = X1U,

e With this definition,
X =2z.D 1!
since

z. Dyttt = xvi.p; vl x = U.D,V;' Vi D U U-D V) = URDRVE
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e Using the SVD on X to perform PCA makes much better sense numerically than

forming the covariance matrix xT'x
e Formation of X1 X can cause loss of precision

® ..IS Mo
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Application: Similarities Between
Documents
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Given a collection of N documents and M keywords

X is the term-frequency (tf) matrix; x; j indicates how often word j occurred in

document 4.
Some classifiers use this representation as inputs

On the other hand, two documents might discuss similar topics (are “semantically

similar”) without using the same key words

By doing a PCA we can find document representations as rows of Z, = XV and

term representations as rows of T’ = Xty

This is also known as Latent Semantic Analysis (LSA)

40



e In total 9 sentences (documents):

— 5 documents on human-computer interaction) (cl - ¢5)

— 4 texts on mathematical graph theory (m1l - m4)

e The 12 key words are in italic letters

41



cl:
c2:
c3:
c4:
cS:

ml:
m2:
m3:
m4:

[Example of text data: Titles of Some Technical Memos

Human machine interface tor ABC computer applications

A survey of user opinion of computer system response time
The EPS user interface management system

System and human system engineering testing of EPS
Relation of user perceived response time to error measurement

The generation of random, binary, ordered trees

The intersection graph of paths in frees

Graph minors IV: Widths of frees and well-quasi-ordering
Graph minors: A survey




e [he tf-Matrix X

e Based on the original data, the Pearson correlation between human and user is nega-

tive, although one would assume a large semantic correlation

42



XT

cl ¢2 ¢3 ¢4 ¢S5 ml m2 m3 m4
interface | 0 | 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 | | 2 0 0 0 0 0
response 0 1 0 0 | 0 0 0 0
time 0 1 0 0 ] 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 | 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
sraph 0 0 0 0 0 0 1 | |
r (human.user) = -.38 Pearson correlation between the words human and user

r (human.minors) = -.29 Pearson correlation between the words human and minor



e Decomposition X = UDV Y

43
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Reconstruction X with r = 2
Shown is X1

Based on X the correlation between human and user is almost one! The similarity

between human and minors is strongly negative (as it should be)

In document m4-: “Graph minors: a survey” the word survey which is in the original

document gets a smaller value than the term trees, which was not in the document

originally
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cl c2 c3 c4 ¢S ml m?2 m3 m4
human 0.16 0.40 0.38 0.47 0.18 -0.05 -0.12 -0.16 -0.09
intertace 0.14 0.37 0.33 0.40 0.16 -0.03 -0.07 -0.10 -0.04
computer 0.15 0.51 0.36 0.41 0.24 0.02 0.06 0.09 0.12
user 0.26 0.84 0.61 0.70 0.39 0.03 0.08 0.12 0.19
system 0.45 1.23 1.05 1.27 0.56 -0.07 -0.15 -0.21 -0.05
response 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
time 0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22
EPS 0.22 0.55 0.51 0.63 0.24 -0.07 -0.14 -0.20 -0.11
survey 0.10 0.53 0.23 0.21 0.27 0.14 0.31 0.44 0.42
trees -0.06 0.23 -0.14 -0.27 0.14 0.24 0.55 0.77 0.66
araph -0.06 0.34 -0.15 -0.30 0.20 0.31 0.69 0.98 0.85

miInors -0.04

0.25

-0.10

-0.21

0.15

0.22

0.50

0.71

0.62

r (human.user) = .94

r (human.minors) = -.83

Pearson correlation between the words human and user

Pearson correlation between the words human and minor



e Top: document correlation in the original data X: The average correlation between

documents in the c-class is almost zero

e Bottom: in X there is a strong correlation between documents in the same class and

strong negative correlation across document classes

45



Correlations between titles in raw data:

cl c2 c3 c4 ¢S ml m. ms

c2 -0.19

c3 0.00 0.00

c4 0.00 0.00 0.47

¢S -0.33 0.58 0.00 -0.31

ml -0.17 -0.30 -0.21 -0.16 -0.17

m2 -0.26 -0.45 -0.32 -0.24 -0.26 0.67

m3 -0.33 -0.58 -0.41 -0.31 -0.33 0.52 0.77

m4 -0.33 -0.19 -0.41 -0.31 -0.33 -0.17 0.26 0.56
0.02 Average Pearson correlationin the three document
-0.30 044 plocksin the raw data

Correlations in two dimensional space:

c2 0.91

c3 1.00 0.91

c4 1.00 0.88 1.00

¢S 0.85 0.99 0.85 0.81

ml -0.85 -0.56 -0.85 -0.88 -0.45

m2 -0.85 -0.56 -0.85 -0.88 -0.44 1.00

m3 -0.85 -0.56 -0.85 -0.88 -0.44 1.00 1.00

m4 -0.81 -0.50 -0.81 -0.84 -0.37 1.00 1.00 1.00
0.92 Average Pearson correlationin the three document
-0.72 1.00

blocksin the reconstructed data



e LSA-similarity often corresponds to the human perception of document or word simi-

larity
e There are commercial applications in the evaluation of term papers

e There are indications that search engine providers like Google and Yahoo, use LSA for

the ranking of pages and to filter our Spam (spam is unusual, novel)

46



The next slides illustrate LSA, where the horizonal axis stands for the word index and

the vertical axis stands for the word count

If we consider word counts as functions of the index (functions as infinite-dimensions
vectors) then the LSA (and the PCA) does function smoothing

The columns of V' would then define the basis functions (note that in the LSI the

clumns would be ortonormal, in contrast to the situation displayed in the plot)
The columns of V' define patterns

If, as shown, the columns of V' have limited support, they define different subspaces
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e PCA assumes approximate normality of the input space distribution

— PCA may still be able to produce a good low dimensional projection of the data

even if the data isn't normally distributed
e PCA may not perform well if the data lies on a complicated manifold
— Consider non-linear alternatives (ICA, LLE, diffusion map, t-SNE, ...)

e PCA assumes that the input data is real and continuous and can’t deal with missing
data

— Consider probabilistic generalizations of PCA with alternative, non-Gaussian noise

models

48



Y ~WX 4+ €

— Latent variables (PCs) X ~ N(0, 1)

— Noise e ~ N (0, W)

Chose noise model (Gaussian, Bernoulli, Poisson,...)
Write down marginal likelihood

Solve with maximum likelihood or EM

Use dual version for non-linear generalizations (Gaussian Process Latent Variable Mo-

dels)

49



Factorization approaches are part of many machine learning solutions
An autoencoder, as used in deep learning, is closely related
Factorization can be generalized to more dimensions:

For example a 3-way array (tensor) X with dimensions subject, predicate, object. The
tensor has a one where the triple is known to exist and zero otherwise. Then we can

approximate (PARAFAC)

.
Ti ] = Z a; kbj kClL K
k=1
Here A contains the latent factors of the subject, B of the object, and C' of the
predicate

If the entries of X are nonnegative (for example represent counts) it sometimes impro-
ves interpretability of the latent factors by enforcing that the factor matrices are non-
negative as well (nonnegative matrix factorization (NMF), probabilistic LSA (pLSA),
latent Dirichlet allocation (LDA))

50



e Consider that we have several input dimensions and several output dimensions

e It makes sense to maintain that the latent factors should be calculated from just the
input representation but that this mapping itself should be derived by also including
the training outputs

e This can be done via partial least squares (pLS) or via a canonical correlation analysis

(CCA)

— PLS reconstructs the direction in the input space that explains the maximum

variance in the output space

— CCA iteratively identifies linear combinations of input and output space, that have

maximum correlation with each other
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In multiclass classification an object is assigned to one out of several classes. In
the ground truth the object belongs to exactly one class. The classifier might only

look at a subset of the inputs

Clustering is identical to classification, only that the class labels are unknown in the

training data

In multi-label classification an object can be assigned to several classes. This means
that also in the ground truth the object can belongs to more than one class. Each
class might only look at an individual subset of the inputs. Let Z;. be the set of inputs
affiliated with class k

Factor analysis and topic models are related to multi-label classification where the
class labels (latent factors) are unknown in the training set (this interpretation works
best with non-negative approaches like NMF, pLSI, LDA)

This also leads to interpretable similarity. Consider a term-document matrix
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— Two documents 7 and ¢’ are semantically similar if their topic profiles are similar,
lLe. Z; & Zy

— Two terms j and j’ are semantically similar if they appear in the same sets 7,
i.e., if their input set profiles are similar (since T = xTu, = v,.D, ) (again,
this interpretation works best with non-negative approaches like NMF, pLSI, LDA)

e Related in data mining: subspace clustering and frequent item set mining (the input
set profiles Z;. are the frequent item sets)



Multiclass classification / Clustering

4 mutually
exclusive
classes
X Yo
o e B
N AV
| | | | [

» Classification:targets
(v) are known during
training

* Clustering: targets (y)
are unknown during
training

Onlythe four dark blue inputs are
found to be important for the
classification decision



Multi-label {(multi-output) Classification / Factor Analysis

4 non mutually
Xy Xiq exclusive classes

*In a factor analysis the y are the factors and the relevant inputs
are the one where the principal vectors are not close to zero
* Thus, each class k might be sensitive to other input sets /,

*Muli-label classification:
targets (y) are known during
training

*Factor analysis: targets (y)
are unknown during training

* Examples:

*Each data point is a document, each factor represents a topic
(sports, politics, ...}, a document might cover several topics and
the topic-specific inputs [, are keywords relevant for classifying
a topic

*Each data point is a customer, each factor represents a buying
pattern (party, baby at home, single, ...), a customer might
cover several buying patterns and the buying-pattern specific
inputs [, are items relevant for classifying a buying pattern
(beer, pretzels) , (diapers, baby food)



