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There are different way to define what a probability stands for
Mathematically, the most rigorous definition is based on Kolmogorov axioms

For beginners it is more important to obtain an intuition, and the definition | present
is based on a relative frequency

We start with an example



Let's assume that there are N = 50000 students in Munich. This set is called the

~

population. N is the size of the population, often assumed to be infinite
Formally, | put the all 50000 students in an urn (bag)

| randomly select a student: this is called an (atomic) event or an experiment and

defines a random process. The selected student is an outcome of the random process
A particular student will be picked with elementary probability 1//N
A particular student has a height attribute (tiny, small, medium, large, huge)

The height H is called a random variable with states h € {tiny, small, medium, large, huge}.
A random variable is a variable (more precisely a function), whose value depends on

the result of a random process. Thus at each experiment | measure a particular h



We can repeat the experiment an infinite number of times: we always put the selected
student back into the urn (sampling with replacement)

Then the probability that a randomly picked student has height H = h is defined as

N
P(H=h)= lim =2

N—oco N

with 0 < P(H = h) < 1. N is the number of experiments and [Ny, is the number
of times that a selected student is observed to have height H = h

If N is finite | call the observed set a sample (training set) D of size N (in reality |
sample without replacement)

| can estimate

In statistics one is interested in how well P(H = h) approximates P(H = h)
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e Probability is a mathematical discipline developed as an abstract model and its con-

clusions are deductions based on axioms (Kolmogorov axioms)

e Statistics deals with the application of the theory to real problems and its conclusions
are inferences or inductions, based on observations (Papoulis: Probability, Random

variables, and Stochastic Processes)

e Frequentist or classical statistics and Bayesian statistics apply probability is slightly

different ways



e Now assume that we also measure weight (size) S with weight attributes very light,

light, normal, heavy, very heavy. Thus S is a second random variable

e Similarly

N
P(S=3s)= lim —
N—oco N

e \We can also count co-occurrences

N
P(H=h,S=s)= lim —*

N —00

This is called the joint probability distribution of H and S



e It is obvious that we can calculate the marginal probabilitiy P(H = h) from the
joint probabilities

>_s N
SN 2 =) P(H=hW=5s)
S

P(H=h)= lim

N —o0

This is called marginalization



e One is often interested in the conditional probability. Let's assume that | am interested

in the probability distribution of S for a given height H = h. Since | need a different
normalization | get

: Nh,s
P(S=s|H=h)= lim
N—00 Nh

__ P(H=h,S=35s)
~ P(H=h)

e With a finite sample

o Np,
P(S=s|/H=h)=
N,



This is all great; so why do we need Neural Networks?

If the number of inputs is large | would need to estimate

Ny,$1,...,$M

P(Y = Yy X1 =x1,..., Xy =xpp) =

When the random variables are binary, | would need to estimate 2M quantities

Another encounter of the “Curse of dimensionality’!



e Fortunately, in reality the dependencies are often simpler and one might get good
conditional model with simplified assumptions
e Linear logistic regression assumes

M
P(Y =1|X] =21,..., Xy = x)) = sig | wg + Z W;T
j=1

Instead of estimating oM quantities | only need to estimate M 4 1 quantities
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e If logistic regression is too simplistic, | can also assume a Neural Network with weight

vector w

P(Y = 11 X1 =21,.... Xy = xpp) = sig(NNw(z1,...,207))
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e We can find a good estimate of w by minimizing a cost function defined on the

training data D

e A maximum likelihood approach would lead to the cross-entropy cost function which

maximizes the likelihood

P(D|w)

e Thus

W = argmax P(D|w) = arg maxlog P(D|w)
W %%
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e Now assume a second urn (bag) with balls; each ball has attached a vector w
e Again the random process selects random balls out off the urn

e This defines a second random process with random variable with joint probability

distribution P(W = w)

e If | could sample many times | could get a good estimate of P(WW = w)
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e Unfortunately, nature only samples one (e.g., the parameters in a logistic regression
model), so |, the researcher, simply assumes a P(w). A common assumption is a

multivariate Gaussian distribution with zero mean and variance 042,

P(w) = N(0, a?I)
P(w) is called the a priori weight distribution, or simply the prior
e The joint distribution of weights and training data is then P(w)P(D|w) (prior
times likelihood) and the a posteriori weight distribution, of simply the posterior is

P(D|w)P(w)

P(w|D) = P(D)

This is a form of Bayes' theorem
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e The maximum a posteriori (MAP) estimate is

WM AP = arg max P(D|w)P(w) = arg mvgx(log P(D|w) + log P(w))

e P(D) is called the evidence or marginal likelihood. To obtain the MAP estimate we

do not need to calculate the evidence
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Conditional probability

Product rule

Chain rule

P(x1,...,zp) = P(x1)P(x2|z1) P(x3|T1,22) ... P(2)/]21,

Bayes' theorem

P(ylx) =

P(z,y)
P(x)

with P(x) > 0O

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

P(y|lx) =

P(z,y) _ P(zly)P(y)

P(x)

P(x)

P(x) >0

@A)
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e Marginal distribution

P(z) =) P(z,y)
Yy

e Independent random variables

P(z,y) = P(z)P(y|z) = P(x)P(y)



e A random variable X (c) is a variable (more precisely a function), whose value

depends on the result of a random process

e Examples:

— cis a coin toss and X (¢) = 1 if the result is head

— cis a person, randomly selected from the University of Munich. X (c¢) is the height

of that person

e A discrete random variable X can only assume a countable number of states.
Thus X = z with z € {x1,29,...}
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e A probability distribution specifies with which probability a random variable assumes

a particular state
e A probability distribution of X can be defined via a probability function f(z):

P(X =) = P({c: X(c) = 2}) = f(=)

e f(x) is the probability function and x is a realisation of X

e One often writes

f(x) = Px(z) = P(x)
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e In statistics, one attempts to derive the probabilities from data (machine learning)

e In probability one assumes either that some probabilities are known, or that they can

be derived from some atomic events

e Atomic event: using some basic assumptions (symmetry, neutrality of nature, fair

coin, ...) one assumes the probabilities for some elementary events
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Atomic events: ¢ = {h,t}

The probability of each elementary event is 1 /2

X (c) is a random variable that is equal to one if the result is head and is zero

otherwise

P(X=1)=1/2
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e From now on we will not refer to any atomic event; for complex random variables
like the height or the weight of a person, it would be pretty much impossible to think
about the atomic events that produced height and weight

e We directly look at the random variables and their dependencies

e The running example will be the distribution of height H and weight W of students
in Munich. For simplicity we assume that there are only two states for either variables:
H =t for a tall person and H = s for a small person. Similarly, W = b for a big
person and W = [ for a light person
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Univariate Probabilities

Sample size 100

P(H=t) = 0.5
P(H=s)=0.5

P(W=b)=0.6
P(W=1)=0.4

(in the sample
(inthe sample

(in the sample
(in the sample

, 50 persons were tall)
, 50 persons were small)

, 60 persons were big)
, 30 persons were light)



e Define two random variables X and Y. A multivariate distribution is defined as:

Ple,y) =P(X=z2,Y=y)=P(X=zANY =vy)

e Note that defines the probability of a conjunction!
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Multivariate Probabilities

big 0.4 \
(40)

0
ao &)
I Z

short tall
H

P(H=tW=b) = 0.4 (inthe sample, 40 persons were tall and big)



e If two random variables are independent, then P(X,Y ) = P(X)P(Y). Thisis not
the case in our example since P(t,b) = 0.4 = P(t)P(b) = 0.5 x 0.6 = 0.3

e Two random variables can be mutually exclusively true: P(X = 1,Y = 1) = 0.

Also not the case in our example (we identify b and ¢ with true)

e If M binary random variables X, ..., X  are all mutually exclusive and collectively
exhaustive (i.e., exactly one variable assumes the state 1 in a given sample), then the

M binary variables can be represented by one random variable with M states
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Mutual Exclusive and Exhaustive
Random Variables

A person belongs to exactly one age class

Teen Young Adult Adult Middle Aged

+ 4 binary random variables that are mutually exclusive and collectively exhaustive

+ Teen=false, YoungAduli=true, Adult=false, MiddleAge=false

+ 1discrete random variable with 4 states

+ Age=YoungAduli



e It should be clear from the discussion that the definition of random variables in a
domain is up to the researcher, although there is often a “natural” choice (height of a

person, income of a person, age of a person, ...)
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e | am interested in the probability distribution of the random variable Y but consider

only atomic events, where X = x

e Definition of a conditional probability distribution

P(X=zY =vy)
P(X =ux)

P(Y =y|lX =) = with P(X =z) >0

e The distribution is identical to the one for the unconditional case, only that | have to
divide by P(X = x) (re-normalize)

e Example: The probability that you have flu is small (P(Y = 1)) but the probability
that you have the flu, given that fever is high, might be high (P(Y = 1|X = 1))
(the filter selects only individuals in the population with high fever)
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Conditional Probabilities P(W[H}

big

light

O

@,

@

@

short

tall

P(b[t)=P(t,b)/P(t)=
0.4/0.5=0.8

P(11t)=P(t,1)/P(t)=
0.1/0.5=0.2

The probability that a person is big, given that this person is tall, is 0.8



Conditional Probabilities P(H| W}

big P(s[b)=P(s,b}/P(b)= P(t|b)=P(t,b)/P(b)=
0.2/0.6=0.33 0.4/0.6=0.66

o ) Q

short tall
H

The probability that a person is tall, given that this person is big, is 0.66



e It follows: product rule
P(z,y) = P(z|y)P(y) = P(y|z)P(x)
e and chain rule

P(z1,...,x2p) = P(z1)P(xa|x1)P(x3|z1,22) ... P(zps|2, .- 2p0—1)
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Product Rule

big P(t,b)=P(b[t) P(t)=
0.8x0.5=0.4

o ) Q

short tall
H

The probability that a person is tall and that this person is big --- is the
same as the probability that a person is big, given that this person is tall,
times the probability that this person is tall



e In general, P(Y|X) # P(X|Y). Bayes' theorem gives the true relationship

e Bayes Theorem

P(x)
P(y)

P(z,y) _ P(ylz)P(x)
P(y) P(y)

P(y) >0

P(zx|ly) = = P(y|x)




Bayes Theorem

Je

light Q

@

@

short

tall

P(t|b)=
P(b[t)P(t)/P(b)=
0.8x0.5/0.6=0.66

The probability that this person is tall, given that this person is big --- is the
same as the probability that someone is big given that this person is tall,
multiplied by the probability that this person is tall divided by the probability

that this person is big



e The marginal distribution can be calculated from a joint distribution as:

P(X=z)=) P(X=ugY =y)
Yy
Also called: law of total probability
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Marginal Probability

Je

o (O
e

short tall
H
P(H=t) =0.5
P(t)= P(t, b) + P(t,]) = 0.4+0.1=0.5

The probability that a person is tall --- is the probability that someone is
tall and big plus the probability that someone is tall and light



e Example: ® = X V (Y A Z). What is P(P = true)?
e We can write the joint as: P(P, X,Y,Z) = P(®|X,Y,Z2)P(X,Y, Z)
e The marginal distribution can be calculated from a joint distribution as:

P(Pd = true) = Z P(® = true|x,y,z) P(x,y, 2)

x?y?’z

S P(z,y.2)

x,y,z. P=true
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e We get for the disjunction
P(X=1VvY=1)=

P(X=1Y=04+P(X=0Y=1)4+P(X=1Y=1)=
[P(X=1,Y=0)4+P(X=1Y=D]4+[P(X=0,Y=1)+P(X=1,Y = 1)]
—P(X=1,Y=1)

=P(X=1)4+PY=1)-PX=1Y=1)

e Only if states are mutually exclusive, P(X = 1,Y = 1) = O; then

P(X=1vY=1)=P(X=1)4+P(Y =1)
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Disjunction

(40)

g
o (G ®
7 d

short tall
H

P((H=t) OR (W=b}) =0.2+0.4+0.1=0.7  =P(t}+P(b)-P(t, b)= 0.5+0.6-0.4 = 0.7

The probability that a person is tall OR that a person is big--- is the probability that
someone is short and big plus the probability that someone is tall and big plus the
probability that someone is tall and light



e P(I,F,S) where I = 1 stands for influenza, F' = 1 stands for fever, S = 1

stands for sneezing

e What is the probability for influenza, when the patient is sneezing, but temperature is

unknown, P(I|S)?
e Thus | need (conditioning) P(I = 1|S=1)=P{U =1,S=1)/P(S=1)
e | calculate via marginalization

PI=1,8=1)=) PU=1,F=fS=1)
J

P(S=1)=>» P(I=i8=1)
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e Independence: two random variables are independent, if,
P(z,y) = P(x)P(ylr) = P(x)P(y)

e Example: The probability that you have flu does not change if | know your age:
P(Y =1|Age=38) = P(Y =1)

e (It follows for independent random variables that Pry = Py @ Py, where Py 4 is
the matrix of joint probabilities and P, and P are vectors of marginal probabilities

and ® is the Kronecker product)
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Joint Tables and Marginals

0.5/0.25 0.25
Independentrandom
variables: 0.5|0.25 0.25
0.5 0.5
Dependentrandom 05105 0
variables: oslo o5
0.5 0.5

0.5

0.5

Notethat diagonal tablesindicate dependencies!

0 0
0
0
0 0.5
0.5 0
0.5 0.5

0.3

0.7

0.12 0.18

0.28 0.42

0.3

0.7

0.4 0.6

0.10 0.2

0.30 0.4

0.4 0.6




e Expected value

E(X)=Ep)(X) =) z;P(X =)
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Expected Value

Let’s associate with
tall 180cm, with
short 150cm, with
big 100kg, and with

light 50kg. W
o (0 ©
9
short tall

E(Height) = 0.5x180cm+0.5x150cm=165cm
E(Weight)=0.6x100kg+0.4x50kg= 80kg
We can also calculate E(Weight | H=t)= 0.8x100kg+0.2x50kg= 90kg



e [he Variance of a random variable is:

var(X) = Z(:vz — BE(X))?P(X = x;)

e The Standard Deviation is its square root:

stdev(X) = /Var(x)
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Variance

Let’s associate with
tall 180cm, with
short 150cm, with
big 100kg, and with
light 50kg.

®
9

short tall
H

Var(Height) = 0.5x(180cm-165cm )?+0.5x(150cm-165cm )°=400.50cm?  stdev(Height)=20.0cm
Var(Weight)=0.6x(100kg-80kg) *+0.4x(50kg-80kg) *= 600kg? stdev(Weight)=24.5kg

Var(Weight | H=t)= 0.8x(100kg-90kg)? +0.2x(50kg-90kg) < = 400kg * stdev(Weight |H=1)=20kg



e Covariance:

cov(X,Y) = ZZ(CBZ — E(X))(yj —E(Y)P(X =z;,Y = yj)
]

e Covariance matrix:

- - var(X) cov(X,Y)
(XYLIXY]T =\ cov(Y, X))  war(Y)
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Let’s associate with
tall 180cm, with
short 150cm, with
big 100kg, and with
light 50kg.

big

light

Covariance

)

short tall
H

Cov(Height, Weight) = 0.4(180-165)(100-80)+0.1(180-165)(50-80)

+0.2(150-165)(100-80)+0.3(150-165)(50-80) = 150



Covariances (X,Y: 0/1)

(Example from before)

0.25 0 0ol 0 0 0.3/ 0.21 0
Independentrandom
variables: 0 0.25 1|0 0 0.7/ 0 0.24
Dependent random 0.510.250.25 0.510.25-0.25 0.310.21 0.08
variables: 0.5/0.25 0.25 0.5]-0.250.25 0.7]|0.08 0.24

Note that independent variables have diagonal covariance matrices
(Advanced *****: Independences are shown as zeros in the precision matrix,
which is the INVERSE of the covariance matrix)



e Useful identity:
cov(X,Y) = E(XY) — E(X)E(Y)
where E(XY) is the correlation.

e The (Pearson) correlation coefficient (confusing naming!) is
cov(X,Y)
T =
Vvar(X)\/var(Y)

e It follows that var(X) = E(X?2) — (E(X))? and

var(f(X)) = E(f(X)?) — (E(f(X)))?
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K

Let’s associate with
tall 180cm, with
short 150cm, with
big 100kg, and with
light 50kg.

®
9

short tall

The correlation coefficient is:
=
Cov(Height,Weight)/(Stdev(Height)xStdev(Height))=150/(20x24.5)=0.3



e We have, independent of the correlation between X and Y/,

E(X+Y)=E(X)+ E(Y)
and thus also

E(X?+4Y?) = E(X?)+ E(Y?)
e For the covariances of the sum of random variables,
var(X+Y) = E(X4+Y —(E(X)+E(Y))) = E(X-E(X))+(Y-E(Y)))?
= EBE(X -EX)))+E(Y —E(Y))?) —2E(X + E(X))(Y — E(Y))

= var(X) +var(Y) — 2cov(X,Y)

e If w is a random vector with covariance matrix cov(w) and y = Aw where A is a
fixed matrix. Then

cov(y) = Acov(w)AT
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e Probability density

Ax—0 Ax

e Thus

b
Pla<x<b) = / f(x)dx

e [ he distribution function is

F(z) = /_ " f(2)dz = P(X < )
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e Expected value

E(X) = Ep(w)(X) = /xP(w)da:

e Variance

var(X) = / (z — E(2))?P(z)dx

e Covariance:

cov(X,Y) = //(ac — E(X))(y— EY))P(x,y)dzdy
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