Some Concepts of Probability (Review)

Volker Tresp
Summer 2018
Definition

• There are different ways to define what a probability stands for.

• Mathematically, the most rigorous definition is based on Kolmogorov axioms.

• For beginners it is more important to obtain an intuition, and the definition I present is based on a relative frequency.

• We start with an example.
Example

- Let’s assume that there are $\tilde{N} = 50000$ students in Munich. This set is called the *population*. \tilde{N} is the size of the population, often assumed to be infinite.

- Formally, I put the all 50000 students in an urn (bag).

- I randomly select a student: this is called an *atomic event* or an *experiment* and defines a *random process*. The selected student is an *outcome* of the random process.

- A particular student will be picked with elementary probability $1/\tilde{N}$.

- A particular student has a height attribute (*tiny, small, medium, large, huge*).

- The height H is called a *random variable* with states $h \in \{\text{tiny, small, medium, large, huge}\}$. A random variable is a variable (more precisely a function), whose value depends on the result of a random process. Thus at each experiment I measure a particular h.
Example, cont’d

• We can repeat the experiment an infinite number of times: we always put the selected student back into the urn (sampling with replacement)

• Then the *probability* that a randomly picked student has height $H = h$ is defined as

$$P(H = h) = \lim_{N \to \infty} \frac{N_h}{N}$$

with $0 \leq P(H = h) \leq 1$. N is the number of experiments and N_h is the number of times that a selected student is observed to have height $H = h$

• If N is finite I call the observed set a sample (training set) D of size N (in reality I sample without replacement)

• I can estimate

$$\hat{P}(H = h) = \frac{N_h}{N} \approx P(H = h)$$

• In statistics one is interested in how well $\hat{P}(H = h)$ approximates $P(H = h)$
Statistics and Probability

• *Probability* is a mathematical discipline developed as an abstract model and its conclusions are *deductions* based on *axioms* (Kolmogorov axioms)

• *Statistics* deals with the application of the theory to real problems and its conclusions are *inferences* or *inductions*, based on observations (Papoulis: Probability, Random variables, and Stochastic Processes)

• *Frequentist or classical statistics* and *Bayesian statistics* apply probability is slightly different ways
Example: Joint Probabilities

- Now assume that we also measure weight (size) \(S \) with weight attributes *very light*, *light*, *normal*, *heavy*, *very heavy*. Thus \(S \) is a second random variable.

- Similarly

\[
P(S = s) = \lim_{N \to \infty} \frac{N_s}{N}
\]

- We can also count co-occurrences

\[
P(H = h, S = s) = \lim_{N \to \infty} \frac{N_{h,s}}{N}
\]

This is called the joint probability distribution of \(H \) and \(S \).
Example: Marginal Probabilities

- It is obvious that we can calculate the marginal probability $P(H = h)$ from the joint probabilities

$$ P(H = h) = \lim_{N \to \infty} \frac{\sum_s N_{h,s}}{N} = \sum_s P(H = h, W = s) $$

This is called marginalization
Example: Conditional Probabilities

- One is often interested in the *conditional probability*. Let’s assume that I am interested in the probability distribution of S for a given height $H = h$. Since I need a different normalization I get

$$P(S = s | H = h) = \lim_{N \to \infty} \frac{N_{h,s}}{N_h}$$

$$= \frac{P(H = h, S = s)}{P(H = h)}$$

- With a finite sample

$$\hat{P}(S = s | H = h) = \frac{N_{h,s}}{N_h}$$
Example: Curse of Dimensionality

- This is all great; so why do we need Neural Networks?
- If the number of inputs is large I would need to estimate

\[\hat{P}(Y = y | X_1 = x_1, \ldots, X_M = x_M) = \frac{N_{y,x_1,\ldots,x_M}}{N_{x_1,\ldots,x_M}} \]

- When the random variables are binary, I would need to estimate \(2^M\) quantities
- Another encounter of the “Curse of dimensionality”!
Example: Supervised Learning with a Linear Model

- Fortunately, in reality the dependencies are often simpler and one might get good conditional model with simplified assumptions

- Linear logistic regression assumes

\[\hat{P}(Y = 1|X_1 = x_1, \ldots, X_M = x_M) = \text{sig} \left(w_0 + \sum_{j=1}^{M} w_j x_j \right) \]

Instead of estimating \(2^M\) quantities I only need to estimate \(M + 1\) quantities
Example: Supervised Learning with a Neural Network

- If logistic regression is too simplistic, I can also assume a Neural Network with weight vector w

$$\hat{P}(Y = 1|X_1 = x_1, \ldots, X_M = x_M) = \text{sig}(\text{NN}_w(x_1, \ldots, x_M))$$
Example: Classical Statistics

- We can find a good estimate of w by minimizing a cost function defined on the training data D
- A *maximum likelihood* approach would lead to the cross-entropy cost function which maximizes the likelihood

$$P(D|w)$$

- Thus

$$w_{ML} = \arg \max_w P(D|w) = \arg \max_w \log P(D|w)$$
Example: Bayesian Statistics

- Now assume a second urn (bag) with balls; each ball has attached a vector \(w \)
- Again the random process selects random balls out off the urn
- This defines a second random process with random variable with joint probability distribution \(P(W = w) \)
- If I could sample many times I could get a good estimate of \(P(W = w) \)
Example: Bayesian Statistics, cont’d

- Unfortunately, nature only samples one (e.g., the parameters in a logistic regression model), so I, the researcher, simply assumes a $P(w)$. A common assumption is a multivariate Gaussian distribution with zero mean and variance α^2,

$$P(w) = \mathcal{N}(0, \alpha^2 I)$$

$P(w)$ is called the *a priori weight distribution*, or simply the *prior*

- The joint distribution of weights and training data is then $P(w)P(D|w)$ (prior times likelihood) and the *a posteriori weight distribution*, of simply the *posterior* is

$$P(w|D) = \frac{P(D|w)P(w)}{P(D)}$$

This is a form of Bayes’ theorem
Example: Bayesian Statistics, cont’d

- The *maximum a posteriori* (MAP) estimate is

 \[w_{MAP} = \arg \max_w P(D|w)P(w) = \arg \max_w (\log P(D|w) + \log P(w)) \]

- \(P(D) \) is called the *evidence* or *marginal likelihood*. To obtain the MAP estimate we do not need to calculate the evidence.
Ockham chooses a razor
Summary

• Conditional probability

\[P(y|x) = \frac{P(x, y)}{P(x)} \quad \text{with} \quad P(x) > 0 \]

• Product rule

\[P(x, y) = P(x|y)P(y) = P(y|x)P(x) \]

• Chain rule

\[P(x_1, \ldots, x_M) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) \ldots P(x_M|x_1, \ldots, x_{M-1}) \]

• Bayes’ theorem

\[P(y|x) = \frac{P(x, y)}{P(x)} = \frac{P(x|y)P(y)}{P(x)} \quad P(x) > 0 \]
• Marginal distribution

\[P(x) = \sum_{y} P(x, y) \]

• Independent random variables

\[P(x, y) = P(x)P(y|x) = P(x)P(y) \]
Discrete Random Variables

- A **random variable** $X(c)$ is a variable (more precisely a function), whose value depends on the result of a random process.

- Examples:
 - c is a coin toss and $X(c) = 1$ if the result is head.
 - c is a person, randomly selected from the University of Munich. $X(c)$ is the height of that person.

- A **discrete random variable** X can only assume a countable number of states. Thus $X = x$ with $x \in \{x_1, x_2, \ldots\}$.
Discrete Random Variables (2)

- A probability distribution specifies with which probability a random variable assumes a particular state.

- A probability distribution of X can be defined via a **probability function** $f(x)$:

 $$P(X = x) = P\{c : X(c) = x\} = f(x)$$

- $f(x)$ is the probability function and x is a realisation of X.

- One often writes

 $$f(x) = P_X(x) = P(x)$$
Elementary / Atomic Events

- In statistics, one attempts to derive the probabilities from data (machine learning).
- In probability one assumes either that some probabilities are known, or that they can be derived from some atomic events.
- **Atomic event**: using some basic assumptions (symmetry, neutrality of nature, fair coin, ...) one assumes the probabilities for some elementary events.
Example: Toss of a Fair Coin

- Atomic events: \(c = \{ h, t \} \)

- The probability of each elementary event is \(1/2 \)

- \(X(c) \) is a random variable that is equal to one if the result is head and is zero otherwise

- \(P(X = 1) = 1/2 \)
Random Variables

• From now on we will not refer to any atomic event; for complex random variables like the height or the weight of a person, it would be pretty much impossible to think about the atomic events that produced height and weight

• We directly look at the random variables and their dependencies

• The running example will be the distribution of height H and weight W of students in Munich. For simplicity we assume that there are only two states for either variables: $H = t$ for a tall person and $H = s$ for a small person. Similarly, $W = b$ for a big person and $W = l$ for a light person
Univariate Probabilities

Sample size 100

\[P(H=t) = 0.5 \quad \text{ (in the sample, 50 persons were tall)} \]
\[P(H=s) = 0.5 \quad \text{ (in the sample, 50 persons were small)} \]

\[P(W=b) = 0.6 \quad \text{ (in the sample, 60 persons were big)} \]
\[P(W=l) = 0.4 \quad \text{ (in the sample, 30 persons were light)} \]
Multivariate Probability Distributions

- Define two random variables X and Y. A **multivariate distribution** is defined as:

$$P(x, y) = P(X = x, Y = y) = P(X = x \land Y = y)$$

- Note that this defines the probability of a *conjunction*!
Multivariate Probabilities

\[P(H=t, W=b) = 0.4 \quad \text{(in the sample, 40 persons were tall and big)} \]
Special Cases

• If two random variables are independent, then $P(X, Y) = P(X)P(Y)$. This is not the case in our example since $P(t, b) = 0.4 \neq P(t)P(b) = 0.5 \times 0.6 = 0.3$

• Two random variables can be mutually exclusively true: $P(X = 1, Y = 1) = 0$. Also not the case in our example (we identify b and t with true)

• If M binary random variables X_1, \ldots, X_M are all mutually exclusive and collectively exhaustive (i.e., exactly one variable assumes the state 1 in a given sample), then the M binary variables can be represented by one random variable with M states
Mutual Exclusive and Exhaustive Random Variables

A person belongs to exactly one age class

- 4 binary random variables that are mutually exclusive and collectively exhaustive
 - Teen=false, YoungAdult=true, Adult=false, MiddleAge=false

- 1 discrete random variable with 4 states
 - Age=YoungAdult
Which Random Variables?

- It should be clear from the discussion that the definition of random variables in a domain is up to the researcher, although there is often a “natural” choice (height of a person, income of a person, age of a person, ...).
Conditional Distribution

- I am interested in the probability distribution of the random variable Y but consider only atomic events, where $X = x$

- **Definition of a conditional probability distribution**

 $$P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)} \quad \text{with} \quad P(X = x) > 0$$

- The distribution is identical to the one for the unconditional case, only that I have to divide by $P(X = x)$ (re-normalize)

- Example: The probability that you have flu is small ($P(Y = 1)$) but the probability that you have the flu, given that fever is high, might be high ($P(Y = 1 | X = 1)$) (the filter selects only individuals in the population with high fever)
Conditional Probabilities $P(W|H)$

The probability that a person is big, given that this person is tall, is 0.8.
Conditional Probabilities $P(H|W)$

The probability that a person is tall, given that this person is big, is 0.66.
Product Rule and Chain Rule

- It follows: **product rule**

\[P(x, y) = P(x|y)P(y) = P(y|x)P(x) \]

- and **chain rule**

\[P(x_1, \ldots, x_M) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) \ldots P(x_M|x_1, \ldots, x_{M-1}) \]
The probability that a person is tall and that this person is big --- is the same as the probability that a person is big, given that this person is tall, times the probability that this person is tall.
Bayes Theorem

- In general, $P(Y|X) \neq P(X|Y)$. Bayes' theorem gives the true relationship

- **Bayes Theorem**

\[
P(x|y) = \frac{P(x, y)}{P(y)} = \frac{P(y|x)P(x)}{P(y)} = \frac{P(y|x)}{P(y)} \frac{P(x)}{P(y)}
\]

$P(y) > 0$
Bayes Theorem

\[P(t|b) = \frac{P(b|t)P(t)}{P(b)} = \frac{0.8 \times 0.5}{0.6} = 0.66 \]

The probability that this person is tall, given that this person is big --- is the same as the probability that someone is big given that this person is tall, multiplied by the probability that this person is tall divided by the probability that this person is big.
Marginal Distribution

- The **marginal distribution** can be calculated from a joint distribution as:

\[P(X = x) = \sum_y P(X = x, Y = y) \]

Also called: law of total probability
Marginal Probability

\[
P(t) = P(t, b) + P(t, l) = 0.4 + 0.1 = 0.5
\]

The probability that a person is tall --- is the probability that someone is tall and big plus the probability that someone is tall and light.
General (Logical) Expression (Query) (*)

- Example: $\Phi = X \lor (Y \land Z)$. What is $P(\Phi = \text{true})$?
- We can write the joint as: $P(\Phi, X, Y, Z) = P(\Phi|X, Y, Z)P(X, Y, Z)$
- The **marginal distribution** can be calculated from a joint distribution as:

$$P(\Phi = \text{true}) = \sum_{x,y,z} P(\Phi = \text{true}|x, y, z)P(x, y, z)$$

$$\sum_{x,y,z: \Phi = \text{true}} P(x, y, z)$$
Special Case: Disjunction (*)

- We get for the disjunction

\[P(X = 1 \lor Y = 1) = \]

\[P(X = 1, Y = 0) + P(X = 0, Y = 1) + P(X = 1, Y = 1) = \]

\[[P(X = 1, Y = 0) + P(X = 1, Y = 1)] + [P(X = 0, Y = 1) + P(X = 1, Y = 1)] - P(X = 1, Y = 1) \]

\[= P(X = 1) + P(Y = 1) - P(X = 1, Y = 1) \]

- Only if states are mutually exclusive, \(P(X = 1, Y = 1) = 0 \); then

\[P(X = 1 \lor Y = 1) = P(X = 1) + P(Y = 1) \]
Disjunction

\[P(H=t) \ OR \ (W=b)) = 0.2 + 0.4 + 0.1 = 0.7 \quad = P(t) + P(b) - P(t, b) = 0.5 + 0.6 - 0.4 = 0.7 \]

The probability that a person is tall OR that a person is big--- is the probability that someone is short and big plus the probability that someone is tall and big plus the probability that someone is tall and light
Marginalization and Conditioning: Basis for Probabilistic Inference

- \(P(I, F, S) \) where \(I = 1 \) stands for influenza, \(F = 1 \) stands for fever, \(S = 1 \) stands for sneezing

- What is the probability for influenza, when the patient is sneezing, but temperature is unknown, \(P(I|S) \)?

- Thus I need (conditioning) \(P(I = 1|S = 1) = P(I = 1, S = 1)/P(S = 1) \)

- I calculate via marginalization

\[
P(I = 1, S = 1) = \sum_f P(I = 1, F = f, S = 1)
\]

\[
P(S = 1) = \sum_i P(I = i, S = 1)
\]
Independent Random Variables

- **Independence**: two random variables are independent, if,

\[P(x, y) = P(x)P(y|x) = P(x)P(y) \]

- Example: The probability that you have flu does not change if I know your age:

\[P(Y = 1|Age = 38) = P(Y = 1) \]

- (It follows for independent random variables that \(P_{x,y} = P_x \otimes P_y \), where \(P_{x,y} \) is the matrix of joint probabilities and \(P_x \) and \(P_y \) are vectors of marginal probabilities and \(\otimes \) is the Kronecker product)
Joint Tables and Marginals

Independent random variables:

Dependent random variables:

Note that diagonal tables indicate dependencies!
Expected Values

- Expected value

\[E(X) = E_{P(x)}(X) = \sum_i x_i P(X = x_i) \]
Expected Value

Let’s associate with
tall 180cm, with
short 150cm, with
big 100kg, and with
light 50kg.

\[E(\text{Height}) = 0.5 \times 180\text{cm} + 0.5 \times 150\text{cm} = 165\text{cm} \]
\[E(\text{Weight}) = 0.6 \times 100\text{kg} + 0.4 \times 50\text{kg} = 80\text{kg} \]
We can also calculate \[E(\text{Weight} | H=\text{t}) = 0.8 \times 100\text{kg} + 0.2 \times 50\text{kg} = 90\text{kg} \]
Variance

• The **Variance** of a random variable is:

\[\text{var}(X) = \sum_i (x_i - E(X))^2 P(X = x_i) \]

• The **Standard Deviation** is its square root:

\[\text{stdev}(X) = \sqrt{\text{Var}(X)} \]
Variance

Let’s associate with
tall 180cm, with
short 150cm, with
big 100kg, and with
light 50kg.

\[
\begin{align*}
\text{Var}(\text{Height}) &= 0.5x(180\text{cm}-165\text{cm})^2 + 0.5x(150\text{cm}-165\text{cm})^2 = 400.50\text{cm}^2 \\
\text{Var}(\text{Weight}) &= 0.6x(100\text{kg}-80\text{kg})^2 + 0.4x(50\text{kg}-80\text{kg})^2 = 600\text{kg}^2 \\
\text{Var}(\text{Weight} | H=t) &= 0.8x(100\text{kg}-90\text{kg})^2 + 0.2x(50\text{kg}-90\text{kg})^2 = 400\text{kg}^2
\end{align*}
\]

\[
\begin{align*}
\text{stdev}(\text{Height}) &= 20.0\text{cm} \\
\text{stdev}(\text{Weight}) &= 24.5\text{kg} \\
\text{stdev}(\text{Weight} | H=1) &= 20\text{kg}
\end{align*}
\]
Covariance

- **Covariance:**

\[
cov(X, Y) = \sum_i \sum_j (x_i - E(X))(y_j - E(Y))P(X = x_i, Y = y_j)
\]

- **Covariance matrix:**

\[
\Sigma_{[XY],[XY]} = \begin{pmatrix}
var(X) & cov(X, Y) \\
cov(Y, X) & var(Y)
\end{pmatrix}
\]
Covariance

Let’s associate with
tall 180cm, with
short 150cm, with
big 100kg, and with
light 50kg.

\[
\text{Cov}(\text{Height, Weight}) = 0.4(180-165)(100-80) + 0.1(180-165)(50-80) + 0.2(150-165)(100-80) + 0.3(150-165)(50-80) = 150
\]
Covariances (X,Y: 0/1)
(Example from before)

Independent random variables:

\[
\begin{bmatrix}
0.25 & 0 & 0 \\
0 & 0.25 & 1 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

Dependent random variables:

\[
\begin{bmatrix}
0.5 & 0.25 & 0.25 & 0.5 & 0.25 & 0.25 & 0.5 & 0.25 & -0.25 \\
0.5 & 0.25 & 0.25 & 0.5 & -0.25 & 0.25 & 0.5 & 0.25 & 0.25 \\
0 & 0 & 0 & 0.3 & 0.21 & 0 & 0.7 & 0 & 0.24 \\
\end{bmatrix}
\]

Note that independent variables have diagonal covariance matrices
(Advanced ****: Independences are shown as zeros in the precision matrix, which is the INVERSE of the covariance matrix)
Covariance, Correlation, and Correlation Coefficient

- Useful identity:
 \[\text{cov}(X, Y) = E(XY) - E(X)E(Y) \]
 where \(E(XY) \) is the correlation.

- The (Pearson) correlation coefficient (confusing naming!) is
 \[r = \frac{\text{cov}(X, Y)}{\sqrt{\text{var}(X)} \sqrt{\text{var}(Y)}} \]

- It follows that \(\text{var}(X) = E(X^2) - (E(X))^2 \) and
 \[\text{var}(f(X)) = E(f(X)^2) - (E(f(X)))^2 \]
Let's associate with tall 180cm, with short 150cm, with big 100kg, and with light 50kg.

The correlation coefficient is:

\[
r = \frac{\text{Cov}(\text{Height, Weight})}{\text{Stdev}(\text{Height}) \times \text{Stdev}(\text{Height})} = \frac{150}{(20 \times 24.5)} = 0.3
\]
More Useful Rules

• We have, independent of the correlation between X and Y,

$$E(X + Y) = E(X) + E(Y)$$

and thus also

$$E(X^2 + Y^2) = E(X^2) + E(Y^2)$$

• For the covariances of the sum of random variables,

$$var(X+Y) = E(X+Y-(E(X)+E(Y))) = E((X-E(X))+(Y-E(Y)))^2$$

$$= E((X-E(X))^2) + E((Y-E(Y))^2) - 2E(X+E(X))(Y-E(Y))$$

$$= var(X) + var(Y) - 2cov(X,Y)$$

• If \mathbf{w} is a random vector with covariance matrix $\text{cov}(\mathbf{w})$ and $\mathbf{y} = A\mathbf{w}$ where A is a fixed matrix. Then

$$\text{cov}(\mathbf{y}) = A\text{cov}(\mathbf{w})A^T$$
Continuous Random Variables

- **Probability density**

 \[f(x) = \lim_{\Delta x \to 0} \frac{P(x \leq X \leq x + \Delta x)}{\Delta x} \]

- Thus

 \[P(a < x < b) = \int_a^b f(x) \, dx \]

- The **distribution function** is

 \[F(x) = \int_{-\infty}^x f(x) \, dx = P(X \leq x) \]
Expectations for Continuous Variables

• Expected value

\[E(X) = E_{P(x)}(X) = \int xP(x)dx \]

• Variance

\[\text{var}(X) = \int (x - E(x))^2P(x)dx \]

• Covariance:

\[\text{cov}(X, Y) = \int \int (x - E(X))(y - E(Y))P(x, y)dxdy \]