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Definition

• There are different way to define what a probability stands for

• Mathematically, the most rigorous definition is based on Kolmogorov axioms

• For beginners it is more important to obtain an intuition, and the definition I present

is based on a relative frequency

• We start with an example
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Example

• Let’s assume that there are Ñ = 50000 students in Munich. This set is called the

population. Ñ is the size of the population, often assumed to be infinite

• Formally, I put the all 50000 students in an urn (bag)

• I randomly select a student: this is called an (atomic) event or an experiment and

defines a random process. The selected student is an outcome of the random process

• A particular student will be picked with elementary probability 1/Ñ

• A particular student has a height attribute (tiny, small, medium, large, huge)

• The heightH is called a random variable with states h ∈ {tiny, small, medium, large, huge}.
A random variable is a variable (more precisely a function), whose value depends on

the result of a random process. Thus at each experiment I measure a particular h
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Example, cont’d

• We can repeat the experiment an infinite number of times: we always put the selected

student back into the urn (sampling with replacement)

• Then the probability that a randomly picked student has height H = h is defined as

P (H = h) = lim
N→∞

Nh
N

with 0 ≤ P (H = h) ≤ 1. N is the number of experiments and Nh is the number

of times that a selected student is observed to have height H = h

• If N is finite I call the observed set a sample (training set) D of size N (in reality I

sample without replacement)

• I can estimate

P̂ (H = h) =
Nh
N
≈ P (H = h)

• In statistics one is interested in how well P̂ (H = h) approximates P (H = h)
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Statistics and Probability

• Probability is a mathematical discipline developed as an abstract model and its con-

clusions are deductions based on axioms (Kolmogorov axioms)

• Statistics deals with the application of the theory to real problems and its conclusions

are inferences or inductions, based on observations (Papoulis: Probability, Random

variables, and Stochastic Processes)

• Frequentist or classical statistics and Bayesian statistics apply probability is slightly

different ways
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Example: Joint Probabilities

• Now assume that we also measure weight (size) S with weight attributes very light,

light, normal, heavy, very heavy. Thus S is a second random variable

• Similarly

P (S = s) = lim
N→∞

Ns

N

• We can also count co-occurrences

P (H = h, S = s) = lim
N→∞

Nh,s

N

This is called the joint probability distribution of H and S
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Example: Marginal Probabilities

• It is obvious that we can calculate the marginal probabilitiy P (H = h) from the

joint probabilities

P (H = h) = lim
N→∞

∑
sNh,s

N
=
∑
s

P (H = h,W = s)

This is called marginalization
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Example: Conditional Probabilities

• One is often interested in the conditional probability. Let’s assume that I am interested

in the probability distribution of S for a given height H = h. Since I need a different

normalization I get

P (S = s|H = h) = lim
N→∞

Nh,s

Nh

=
P (H = h, S = s)

P (H = h)

• With a finite sample

P̂ (S = s|H = h) =
Nh,s

Nh
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Example: Curse of Dimensionality

• This is all great; so why do we need Neural Networks?

• If the number of inputs is large I would need to estimate

P̂ (Y = y|X1 = x1, ..., XM = xM) =
Ny,x1,...,xM

Nx1,...,xM

• When the random variables are binary, I would need to estimate 2M quantities

• Another encounter of the “Curse of dimensionality”!
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Example: Supervised Learning with a Linear Model

• Fortunately, in reality the dependencies are often simpler and one might get good

conditional model with simplified assumptions

• Linear logistic regression assumes

P̂ (Y = 1|X1 = x1, ..., XM = xM) = sig

w0 +
M∑
j=1

wjxj


Instead of estimating 2M quantities I only need to estimate M + 1 quantities

10



Example: Supervised Learning with a Neural Network

• If logistic regression is too simplistic, I can also assume a Neural Network with weight

vector w

P̂ (Y = 1|X1 = x1, ..., XM = xM) = sig (NNw(x1, . . . , xM))
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Example: Classical Statistics

• We can find a good estimate of w by minimizing a cost function defined on the

training data D

• A maximum likelihood approach would lead to the cross-entropy cost function which

maximizes the likelihood

P (D|w)

• Thus

wML = arg max
w

P (D|w) = arg max
w

logP (D|w)
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Example: Bayesian Statistics

• Now assume a second urn (bag) with balls; each ball has attached a vector w

• Again the random process selects random balls out off the urn

• This defines a second random process with random variable with joint probability

distribution P (W = w)

• If I could sample many times I could get a good estimate of P (W = w)

13



Example: Bayesian Statistics, cont’d

• Unfortunately, nature only samples one (e.g., the parameters in a logistic regression

model), so I, the researcher, simply assumes a P (w). A common assumption is a

multivariate Gaussian distribution with zero mean and variance α2,

P (w) = N (0, α2I)

P (w) is called the a priori weight distribution, or simply the prior

• The joint distribution of weights and training data is then P (w)P (D|w) (prior

times likelihood) and the a posteriori weight distribution, of simply the posterior is

P (w|D) =
P (D|w)P (w)

P (D)

This is a form of Bayes’ theorem
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Example: Bayesian Statistics, cont’d

• The maximum a posteriori (MAP) estimate is

wMAP = arg max
w

P (D|w)P (w) = arg max
w

(logP (D|w) + logP (w))

• P (D) is called the evidence or marginal likelihood. To obtain the MAP estimate we

do not need to calculate the evidence
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Summary

• Conditional probability

P (y|x) =
P (x, y)

P (x)
with P (x) > 0

• Product rule

P (x, y) = P (x|y)P (y) = P (y|x)P (x)

• Chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)

• Bayes’ theorem

P (y|x) =
P (x, y)

P (x)
=
P (x|y)P (y)

P (x)
P (x) > 0
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• Marginal distribution

P (x) =
∑
y

P (x, y)

• Independent random variables

P (x, y) = P (x)P (y|x) = P (x)P (y)



Discrete Random Variables

• A random variable X(c) is a variable (more precisely a function), whose value

depends on the result of a random process

• Examples:

– c is a coin toss and X(c) = 1 if the result is head

– c is a person, randomly selected from the University of Munich. X(c) is the height

of that person

• A discrete random variable X can only assume a countable number of states.

Thus X = x with x ∈ {x1, x2, . . .}
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Discrete Random Variables (2)

• A probability distribution specifies with which probability a random variable assumes

a particular state

• A probability distribution of X can be defined via a probability function f(x):

P (X = x) = P ({c : X(c) = x}) = f(x)

• f(x) is the probability function and x is a realisation of X

• One often writes

f(x) = PX(x) = P (x)
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Elementary / Atomic Events

• In statistics, one attempts to derive the probabilities from data (machine learning)

• In probability one assumes either that some probabilities are known, or that they can

be derived from some atomic events

• Atomic event: using some basic assumptions (symmetry, neutrality of nature, fair

coin, ...) one assumes the probabilities for some elementary events
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Example: Toss of a Fair Coin

• Atomic events: c = {h, t}

• The probability of each elementary event is 1/2

• X(c) is a random variable that is equal to one if the result is head and is zero

otherwise

• P (X = 1) = 1/2
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Random Variables

• From now on we will not refer to any atomic event; for complex random variables

like the height or the weight of a person, it would be pretty much impossible to think

about the atomic events that produced height and weight

• We directly look at the random variables and their dependencies

• The running example will be the distribution of height H and weight W of students

in Munich. For simplicity we assume that there are only two states for either variables:

H = t for a tall person and H = s for a small person. Similarly, W = b for a big

person and W = l for a light person
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Multivariate Probability Distributions

• Define two random variables X and Y . A multivariate distribution is defined as:

P (x, y) = P (X = x, Y = y) = P (X = x ∧ Y = y)

• Note that defines the probability of a conjunction!
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Special Cases

• If two random variables are independent, then P (X,Y ) = P (X)P (Y ). This is not

the case in our example since P (t, b) = 0.4 6= P (t)P (b) = 0.5× 0.6 = 0.3

• Two random variables can be mutually exclusively true: P (X = 1, Y = 1) = 0.

Also not the case in our example (we identify b and t with true)

• If M binary random variables X1, . . . , XM are all mutually exclusive and collectively

exhaustive (i.e., exactly one variable assumes the state 1 in a given sample), then the

M binary variables can be represented by one random variable with M states
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Which Random Variables?

• It should be clear from the discussion that the definition of random variables in a

domain is up to the researcher, although there is often a“natural”choice (height of a

person, income of a person, age of a person, ...)
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Conditional Distribution

• I am interested in the probability distribution of the random variable Y but consider

only atomic events, where X = x

• Definition of a conditional probability distribution

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
with P (X = x) > 0

• The distribution is identical to the one for the unconditional case, only that I have to

divide by P (X = x) (re-normalize)

• Example: The probability that you have flu is small (P (Y = 1)) but the probability

that you have the flu, given that fever is high, might be high (P (Y = 1|X = 1))

(the filter selects only individuals in the population with high fever)
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Product Rule and Chain Rule

• It follows: product rule

P (x, y) = P (x|y)P (y) = P (y|x)P (x)

• and chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)
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Bayes Theorem

• In general, P (Y |X) 6= P (X|Y ). Bayes’ theorem gives the true relationship

• Bayes Theorem

P (x|y) =
P (x, y)

P (y)
=
P (y|x)P (x)

P (y)
= P (y|x)

P (x)

P (y)

P (y) > 0
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Marginal Distribution

• The marginal distribution can be calculated from a joint distribution as:

P (X = x) =
∑
y

P (X = x, Y = y)

Also called: law of total probability
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General (Logical) Expression (Query) (*)

• Example: Φ = X ∨ (Y ∧ Z). What is P (Φ = true)?

• We can write the joint as: P (Φ, X, Y, Z) = P (Φ|X,Y, Z)P (X,Y, Z)

• The marginal distribution can be calculated from a joint distribution as:

P (Φ = true) =
∑
x,y,z

P (Φ = true|x, y, z)P (x, y, z)

∑
x,y,z:Φ=true

P (x, y, z)
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Special Case: Disjunction (*)

• We get for the disjunction

P (X = 1 ∨ Y = 1) =

P (X = 1, Y = 0) + P (X = 0, Y = 1) + P (X = 1, Y = 1) =

[P (X = 1, Y = 0) + P (X = 1, Y = 1)] + [P (X = 0, Y = 1) + P (X = 1, Y = 1)]

−P (X = 1, Y = 1)

= P (X = 1) + P (Y = 1)− P (X = 1, Y = 1)

• Only if states are mutually exclusive, P (X = 1, Y = 1) = 0; then

P (X = 1 ∨ Y = 1) = P (X = 1) + P (Y = 1)
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Marginalization and Conditioning: Basis for Probabilistic
Inference

• P (I, F, S) where I = 1 stands for influenza, F = 1 stands for fever, S = 1

stands for sneezing

• What is the probability for influenza, when the patient is sneezing, but temperature is

unknown, P (I|S)?

• Thus I need (conditioning) P (I = 1|S = 1) = P (I = 1, S = 1)/P (S = 1)

• I calculate via marginalization

P (I = 1, S = 1) =
∑
f

P (I = 1, F = f, S = 1)

P (S = 1) =
∑
i

P (I = i, S = 1)
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Independent Random Variables

• Independence: two random variables are independent, if,

P (x, y) = P (x)P (y|x) = P (x)P (y)

• Example: The probability that you have flu does not change if I know your age:

P (Y = 1|Age = 38) = P (Y = 1)

• (It follows for independent random variables that Px,y = Px ⊗ Py, where Px,y is

the matrix of joint probabilities and Px and Py are vectors of marginal probabilities

and ⊗ is the Kronecker product)
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Expected Values

• Expected value

E(X) = EP (x)(X) =
∑
i

xiP (X = xi)
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Variance

• The Variance of a random variable is:

var(X) =
∑
i

(xi − E(X))2P (X = xi)

• The Standard Deviation is its square root:

stdev(X) =
√
V ar(x)
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Covariance

• Covariance:

cov(X,Y ) =
∑
i

∑
j

(xi − E(X))(yj − E(Y ))P (X = xi, Y = yj)

• Covariance matrix:

Σ[XY ],[XY ] =

(
var(X) cov(X,Y )
cov(Y,X) var(Y )

)
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Covariance, Correlation, and Correlation Coefficient

• Useful identity:

cov(X,Y ) = E(XY )− E(X)E(Y )

where E(XY ) is the correlation.

• The (Pearson) correlation coefficient (confusing naming!) is

r =
cov(X,Y )√

var(X)
√
var(Y )

• It follows that var(X) = E(X2)− (E(X))2 and

var(f(X)) = E(f(X)2)− (E(f(X)))2
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More Useful Rules

• We have, independent of the correlation between X and Y ,

E(X + Y ) = E(X) + E(Y )

and thus also

E(X2 + Y 2) = E(X2) + E(Y 2)

• For the covariances of the sum of random variables,

var(X+Y ) = E(X+Y−(E(X)+E(Y ))) = E((X−E(X))+(Y−E(Y )))2

= E((X −E(X))2) +E((Y −E(Y ))2)−2E(X +E(X))(Y −E(Y ))

= var(X) + var(Y )− 2cov(X,Y )

• If w is a random vector with covariance matrix cov(w) and y = Aw where A is a

fixed matrix. Then

cov(y) = Acov(w)AT
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Continuous Random Variables

• Probability density

f(x) = lim
∆x→0

P (x ≤ X ≤ x+ ∆x)

∆x

• Thus

P (a < x < b) =

∫ b

a
f(x)dx

• The distribution function is

F (x) =

∫ x

−∞
f(x)dx = P (X ≤ x)
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Expectations for Continuous Variables

• Expected value

E(X) = EP (x)(X) =

∫
xP (x)dx

• Variance

var(X) =

∫
(x− E(x))2P (x)dx

• Covariance:

cov(X,Y ) =

∫ ∫
(x− E(X))(y − E(Y ))P (x, y)dxdy
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