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In the lecture on basis functions, the assumption was that f(x) can be approximated

by a weighted sum of basis functions

Alternatively, it might make sense to have a preference for smooth functions: functional

values close in input space should have similar functional values

In the next figure it might make sense that the functional values at x; and x are

similar (smoothness assumption)

Thus, one might prefer the smooth (continuous) function in favor of the dashed

function






e One can implement smoothness assumptions over kernel functions

o A kernel function k(x;,x) = kx,(x) determines, how neighboring functional values

are influenced when f(x;) is given

e Example: Gaussian kernel



k. (x)




It turns out that there is a close relationship between kernels and basis functions:

My,

k(x;,x) = kx;(x) = Z ¢;(x;);(x)

=1
It follows the symmetry: k(x;, X;) = kx,;(X;) = k(X;,%;) = kx;(x;)
Thus: given the M basis functions, this equation gives you the corresponding kernel

Note the kernel is a function of weighted basis functions. The weight ¢;(x;) are the

amplitudes of the basis functions at x;

As we see later: For positive definite kernels, we can also go the other way: given the

kernels | can give you a corresponding set of basis functions (not unique)



Gaussian basis functions (continuous)

Kernel: dotted

3 T
e{,(xl) =(0.25,1.00,0.25)
g?}(xz) =(0.10,0.90,0.50)"
gsg} (x,)=(0.02,0.60,0.90)"
¢ (x,)=(0.00,0.01,0.30)"

k(x.x) =97 (x)P(x,) =1.12
k(x,x,) =97 () (x,) =1.03

k(x,,x,) = %I(xl)g%:(xj) ~0.83
k(x1=x4) = @I(xl)ﬁ(xo =0.08



Kernels do not need to look symmetrical: linear kernel in 1-D

k(xf: x) = xz'.:f

2
-t

k "-:2_" —
(=29 k(v =Lx)=x

* k(x;=0,x)=0

R 5 — I
Symmetry: k(1,2) = k(1,2) = 2 k(x; =—0.5.x) = -0.5x



e Regression

N
§(x) =) vik(x;,%)
=1
e C(lassification
N
j(x) = sign | ) vik(x;,x)
=1

e The solution contains as many kernels as there are data points N (independent on

the number of underlying basis functions M¢)



e [hus with M¢ — 00 : | can work with a finite number IN of kernels, instead of an

infinite number of basis functions

e Thus no matter how many training data points: a perfect fit can be possible (with

A2 — 0)

e S50 in neural networks, one makes a model of basis functions more flexible by intro-
ducing hidden parameters for tuning the basis functions, with kernels one makes the

model more flexible by working with an infinite number of fixed basis functions






Kernel System

Classification

Regression




e \We start with the penalized least squares cost function for models with basis functions
e Regularized cost function
N My, My
— 2 2
costP™(w) = Y (y;— > widj(z))*+ A ) w;
i=1 j=1 j=1

= (y - (I)W)T(y — bw) + Awlw

where @ is the design matrix design with (®); ; = ¢;(x;) .



e We calculate the first derivatives and set them to zero,

tpen
8COS@ (w) = 28! (y — ®dw) 4+ 2 w =0
\ 4

It follows that one can write,

1
Wpen = X(I)T(y — (I)Wpen)



e This is not an explicit solution (Wpen appears on both sides of the equation). But we

know now, that we can write the solution as a linear combination of the input vectors

N
Wpen = dlv = Z 'Uiqg(xi)

1=1

e Note that we have a sum over N data points (and not M basis functions)

10



e \We immediately get,
My,

f(X) — Z wj,pen¢j (x;) = g(X)TWpen

j=1

N
=¢(x)" ®'v="> vik(x;,x)

1=1
' — T
with v.= (v1,...,vn)" and

My,

k(x;,x) = ()T o(x) = ) p(x) dp(x)

k=1

e But note that not all functions that can be represented by the basis functions can be
written in this form, only the functions that minimize the cost function!
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e We can substitute the constraints, and obtain as a cost function with kernel weights

as free parameters

costP’(v) = (y — ®®' V) (y — #d'v) + wliddly

= (y — Kv)I(y — Kv) + 2! Kv

Explicitly

N N 2

N N
costP(v) = Z Yi — Z vik(zi, zj) | + A Z Z vivik(@i, 25)

i=1 j=1 i=1j=1
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Here K is an N X IN matrix with elements

My,

kij = d(x) d(xj) = ) dp(x)p(x;)

k=1

e An important result: We can write the cost function, such that only dot
products of the basis functions appear (i.e., the kernels), but not the
basis functions themselves!



e Now we can take the derivative of the cost function with respect to v (note, that
K = KT
dcostPe (v)
ov

=2K(y — Kv) 4+ 2XKv

such that
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e A prediction can be written as (W, v are the penalized least squares solutions)

N
F(x) =¢(x)'w=g¢x)olv= Z vik (X, X)
1=1
with

k(xi,%) = ¢(x)] (x)

e Another important result: we can write the solution such that only dot products are

used; the solution can be written as a weighted sum of N kernels.

e We want to point out again, that not each function that can be written as Zj w;;(X)
can be expressed in this way, only a subset of the functions and in particular that one

which minimizes the cost function based on the specific N training data points!
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e With only one training data point we get

f(x) = vik(x1,%)
e As discussed previously:

k, (%)
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e If data are on a low-dimensional manifold in high dimensions, Gaussian kernels would
be placed on the manifold and the kernel width can be adapted to fit the complexity

of the function on the manifold

e Outside the manifold, f(x) — O
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e This is interesting, since there can be more basis functions than data points; in particu-

lar this result is valid, even if we work with an infinite number of basis functions!

e It is even possible to start with the kernels, without knowing exactly, what the under-
lying basis functions are

e A dot product between to data points X; and X,/ in input space is
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e The empirical covariance between the dimensions in input space with normalized zero-

mean data is

| N
cov(j,j") = N > i
i=1

e A dot product between to data points in input space is

M

T, — } :
X, X4 — xi,jxi/’j

j=1

which is the linear kernel
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e The empirical covariance between the dimensions in basis function space is
1 & 1 & 1 o
covy (g i) = Zl bj () dy(es) — | - Zl b)) | |~ Zl by (2:)

e A dot product between two data points in basis function space is

My,

d(x) ! d(xy) = Z ¢ (%), (xy) = k(x4,X;)

=1

and this is exactly the kernel!
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e Assume that the prior distribution of of the basis function weights has a zero mean

and a unit covariance

w ~ N (0, TI)

e [hen the functions have zero mean and a covariance of
cov(f(x;), f(x;)) = cov(¢’ (x;)w, ¢! (x;)w) = &' (x;) cov(w)p(x;)
= k(x;,X%;)

e This interpretation is used in Gaussian processes: the kernel represents the covariance

between the function values, evaluated at different inputs
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e When N >> My it is computationally more efficient to work with basis functions
(requiring M;’ —+ Mq%N operations). When My >> N, the kernel version is more

efficient, requiring N3+ N2M¢ operations. If the kernels are known a priori (i.e., if
they do not need to be calculates via dot product), the kernel solution requires N3

operations.
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e Still, not all functions are valid kernel functions. Mercer's theorem addresses that issue
e (From Vapnik: The nature of statistical learning theory. Springer, 2000)

e Mercer's Theorem: To guarantee, that the symmetric functions k(x,2z) = k(z, x)

from Lo permits an expansion as

k(z,%) = > Ayoj, (2) (%)
h=1

with positive coefficients A;, > O, it is necessary and sufficient, that

//k(z,x)g(x)g(z)dxdz > 0
for all g #= O, for which

/gQ(X)dX < 0o
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e The theorem says, that for so-called positive-definite kernels (“Mercer kernels”), a

decomposition in basis functions is possible!

e Each kernel-matrix K is then also positive definite, al Ka > 0, for all vectors a 7% O.

A symmetric matrix is positive definite iff all its eigenvalues are positive

e The results also generalize to the non-negative (positive-semidefinite) case



e Linear Kernel
k(x;,x) = X,LTX

The kernel matrix is then K = X X' (Recall that the empirical correlation between
the input dimensions is X1 X)

e Polynomial kernel (1)
k(xs, %) = (xF )"
The basis functions are all ordered polynomials of order d

e Polynomial kernel (2)
k(x;, %) = (x{ x + R)*

The corresponding basis functions are all polynomials of order d or smaller. R is a

tuning parameter
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e GauB-kernels (RBF-kernels)

1 2
k(x;,X) =exp | —=||x; — x
(xi,x) = ex0 (5 5lhxi = x12)
These kernels correspond to infinitely many Gaussian basis functions

e Sigmoid (“neural network”) kernels

k(x;,x) = sig (X?X)



A necessary condition is that k(x;,X;) = k(x;,X;)!

So any function of ||x; — x;|| would be a good candidate. These kernels also appear

symmetrical, like a Gaussian kernel

But note that also any function of ||X,L-TX]-|| would be a good candidate. They don't

necessarily look symmetrical, like the linear kernel or the polynomial kernel
Here is an example of a kernel that violates the necessary condition
k(xi,%7) = x; x; + al|x]|°
The kernels discussed here are called dot-product kernels, Mercer kernels, or kernels

in a reproducing kernel Hilbert space

Kernels are widely used in mathematics. The kernels used here should, for example,

not to be confused with the kernels used in kernel smoothing!
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e Example: Classification of chemical graphs

— Molecules can be described as graphs (structural formula, chemical graph theories)

— Task: | know from N molecules, if these have a particular medical effect (training

data). Can | predict the medical effect of a new molecule?

— Features which describe a chemical structure formula are difficult to describe; it

is easier to define graph kernels
e Example: Classification of a person in a social network

— Kernels reflect similarity with respect to a network topology. For example, one can
define a kernel based on the number of overlapping substructures of two persons

in their mutual neighborhoods
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® Representer Theorem: Let €2 be a strictly monotonously increasing function and let

l0Ss() be an arbitrary loss function, then the minimizer of the loss function

N
Z loss(y;, f(x;:)) + (I 4)
i=1

can be represented as
N

Fx) =) vik(xj,x)

1=1

e [[fll, = |/(f,f), is a norm in a reproducing kernel Hilbert space (RKHS) and

includes ||f|, = wlw

e 50 kernel solutions are possible for all cost functions we are considering!

27



