
Kernels

Volker Tresp
Summer 2018

1



Smoothness Assumption

• In the lecture on basis functions, the assumption was that f(x) can be approximated

by a weighted sum of basis functions

• Alternatively, it might make sense to have a preference for smooth functions: functional

values close in input space should have similar functional values

• In the next figure it might make sense that the functional values at xi and x are

similar (smoothness assumption)

• Thus, one might prefer the smooth (continuous) function in favor of the dashed

function
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Introduction Kernels

• One can implement smoothness assumptions over kernel functions

• A kernel function k(xi,x) = kxi(x) determines, how neighboring functional values

are influenced when f(xi) is given

• Example: Gaussian kernel
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Kernels and Basis Functions

• It turns out that there is a close relationship between kernels and basis functions:

k(xi,x) = kxi(x) =

Mφ∑
j=1

φj(xi)φj(x)

• It follows the symmetry: k(xi,xj) = kxi(xj) = k(xj,xi) = kxj(xi)

• Thus: given the Mφ basis functions, this equation gives you the corresponding kernel

• Note the kernel is a function of weighted basis functions. The weight φj(xi) are the

amplitudes of the basis functions at xi

• As we see later: For positive definite kernels, we can also go the other way: given the

kernels I can give you a corresponding set of basis functions (not unique)
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Kernel Prediction

• Regression

ŷ(x) =
N∑
i=1

vik(xi,x)

• Classification

ŷ(x) = sign

 N∑
i=1

vik(xi,x)


• The solution contains as many kernels as there are data points N (independent on

the number of underlying basis functions Mφ)
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Kernels: Infinite Number of Basis Functions

• Thus with Mφ → ∞ : I can work with a finite number N of kernels, instead of an

infinite number of basis functions

• Thus no matter how many training data points: a perfect fit can be possible (with

λ/σ2 → 0)

• So in neural networks, one makes a model of basis functions more flexible by intro-

ducing hidden parameters for tuning the basis functions, with kernels one makes the

model more flexible by working with an infinite number of fixed basis functions
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One Kernel for Each Data Point
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Starting with the Cost Function

• We start with the penalized least squares cost function for models with basis functions

• Regularized cost function

costpen(w) =
N∑
i=1

(yi −
Mφ∑
j=1

wjφj(xi))2 + λ

Mφ∑
j=1

w2
j

= (y −Φw)T (y −Φw) + λwTw

where Φ is the design matrix design with (Φ)i,j = φj(xi) .
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Implicit Solution

• We calculate the first derivatives and set them to zero,

∂costpen(w)

∂w
= −2ΦT (y −Φw) + 2λw = 0

It follows that one can write,

wpen =
1

λ
ΦT (y −Φwpen)
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Approach

• This is not an explicit solution (wpen appears on both sides of the equation). But we

know now, that we can write the solution as a linear combination of the input vectors

wpen = ΦTv =
N∑
i=1

vi~φ(xi)

• Note that we have a sum over N data points (and not Mφ basis functions)
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Kernel Model

• We immediately get,

f̂(x) =

Mφ∑
j=1

wj,penφj(xi) = ~φ(x)Twpen

= ~φ(x)TΦTv =
N∑
i=1

vik(xi,x)

with v = (v1, . . . , vN)T and

k(xi,x) = ~φ(xi)
T ~φ(x) =

Mφ∑
k=1

φk(xi)φk(x)

• But note that not all functions that can be represented by the basis functions can be

written in this form, only the functions that minimize the cost function!
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A New Form of the Cost Function

• We can substitute the constraints, and obtain as a cost function with kernel weights

as free parameters

costpen(v) = (y −ΦΦTv)T (y −ΦΦTv) + λvTΦΦTv

= (y −Kv)T (y −Kv) + λvTKv

Explicitly

costpen(v) =
N∑
i=1

yi − N∑
j=1

vjk(xi, xj)

2

+ λ

N∑
i=1

N∑
j=1

vivjk(xi, xj)
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Here K is an N ×N matrix with elements

ki,j = ~φ(xi)
T ~φ(xj) =

Mφ∑
k=1

φk(xi)φk(xj)

• An important result: We can write the cost function, such that only dot

products of the basis functions appear (i.e., the kernels), but not the

basis functions themselves!



Kernel Parameters

• Now we can take the derivative of the cost function with respect to v (note, that

K = KT )

∂costpen(v)

∂v
= 2K(y −Kv) + 2λKv

such that

vpen = (K + λI)−1y
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Kernel Prediction

• A prediction can be written as (w,v are the penalized least squares solutions)

f̂(x) = ~φ(x)Tw = ~φ(x)TΦTv =
N∑
i=1

vik(xi,x)

with

k(xi,x) = ~φ(x)Ti
~φ(x)

• Another important result: we can write the solution such that only dot products are

used; the solution can be written as a weighted sum of N kernels.

• We want to point out again, that not each function that can be written as
∑
j wjφj(x)

can be expressed in this way, only a subset of the functions and in particular that one

which minimizes the cost function based on the specific N training data points!
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One Kernel for Each data Point
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With only One Training Data Point

• With only one training data point we get

f(x) = v1k(x1,x)

• As discussed previously:
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Manifold View

• If data are on a low-dimensional manifold in high dimensions, Gaussian kernels would

be placed on the manifold and the kernel width can be adapted to fit the complexity

of the function on the manifold

• Outside the manifold, f(x)→ 0
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Comments and Interpretation of a Kernel

• This is interesting, since there can be more basis functions than data points; in particu-

lar this result is valid, even if we work with an infinite number of basis functions!

• It is even possible to start with the kernels, without knowing exactly, what the under-

lying basis functions are

• A dot product between to data points xi and xi′ in input space is
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Input Space

• The empirical covariance between the dimensions in input space with normalized zero-

mean data is

cov(j, j′) =
1

N

N∑
i=1

xi,jxi,j′

• A dot product between to data points in input space is

xTi xi′ =
M∑
j=1

xi,jxi′,j

which is the linear kernel
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Basis Function Space

• The empirical covariance between the dimensions in basis function space is

covφ(j, j′) =
1

N

N∑
i=1

φj(xi)φj′(xi)−

 1

N

N∑
i=1

φj(xi)

 1

N

N∑
i=1

φj′(xi)


• A dot product between two data points in basis function space is

~φ(xi)
T ~φ(xi′) =

Mφ∑
j=1

φj(xi)φj(xi′) = k(xi,xi′)

and this is exactly the kernel!
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Gauss Process

• Assume that the prior distribution of of the basis function weights has a zero mean

and a unit covariance

w ∼ N (0, I)

• Then the functions have zero mean and a covariance of

cov(f(xi), f(xj)) = cov(~φT (xi)w, ~φT (xj)w) = ~φT (xi) cov(w)~φ(xj)

= k(xi,xj)

• This interpretation is used in Gaussian processes: the kernel represents the covariance

between the function values, evaluated at different inputs
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Computational Complexity

• When N >> Mφ it is computationally more efficient to work with basis functions

(requiring M3
φ + M2

φN operations). When Mφ >> N , the kernel version is more

efficient, requiring N3 +N2Mφ operations. If the kernels are known a priori (i.e., if

they do not need to be calculates via dot product), the kernel solution requires N3

operations.
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Mercer’s Theorem

• Still, not all functions are valid kernel functions. Mercer’s theorem addresses that issue

• (From Vapnik: The nature of statistical learning theory. Springer, 2000)

• Mercer’s Theorem: To guarantee, that the symmetric functions k(x, z) = k(z,x)

from L2 permits an expansion as

k(z,x) =
∞∑
h=1

λhφ
T
h (z)φh(x)

with positive coefficients λh > 0, it is necessary and sufficient, that∫ ∫
k(z,x)g(x)g(z)dxdz > 0

for all g 6= 0, for which ∫
g2(x)dx <∞
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• The theorem says, that for so-called positive-definite kernels (“Mercer kernels”), a

decomposition in basis functions is possible!

• Each kernel-matrixK is then also positive definite, aTKa > 0, for all vectors a 6= 0.

A symmetric matrix is positive definite iff all its eigenvalues are positive

• The results also generalize to the non-negative (positive-semidefinite) case



Kernel Design

• Linear Kernel

k(xi,x) = xTi x

The kernel matrix is then K = XXT . (Recall that the empirical correlation between

the input dimensions is XTX)

• Polynomial kernel (1)

k(xi,x) = (xTi x)d

The basis functions are all ordered polynomials of order d

• Polynomial kernel (2)

k(xi,x) = (xTi x +R)d

The corresponding basis functions are all polynomials of order d or smaller. R is a

tuning parameter
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• Gauß-kernels (RBF-kernels)

k(xi,x) = exp

(
−

1

2s2
‖xi − x‖2

)
These kernels correspond to infinitely many Gaussian basis functions

• Sigmoid (“neural network”) kernels

k(xi,x) = sig
(
xTi x

)



Comment on Valid Kernels

• A necessary condition is that k(xi,xj) = k(xj,xi)!

• So any function of ‖xi− xj‖ would be a good candidate. These kernels also appear

symmetrical, like a Gaussian kernel

• But note that also any function of ‖xTi xj‖ would be a good candidate. They don’t

necessarily look symmetrical, like the linear kernel or the polynomial kernel

• Here is an example of a kernel that violates the necessary condition

k(xi,xj) = xTi xj + α‖xi‖2

• The kernels discussed here are called dot-product kernels, Mercer kernels, or kernels

in a reproducing kernel Hilbert space

• Kernels are widely used in mathematics. The kernels used here should, for example,

not to be confused with the kernels used in kernel smoothing!
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Sometimes it is Easier to Define Sensible Kernels than it is to
Define Sensible Basis Functions

• Example: Classification of chemical graphs

– Molecules can be described as graphs (structural formula, chemical graph theories)

– Task: I know from N molecules, if these have a particular medical effect (training

data). Can I predict the medical effect of a new molecule?

– Features which describe a chemical structure formula are difficult to describe; it

is easier to define graph kernels

• Example: Classification of a person in a social network

– Kernels reflect similarity with respect to a network topology. For example, one can

define a kernel based on the number of overlapping substructures of two persons

in their mutual neighborhoods
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Representer Theorem

• Representer Theorem: Let Ω be a strictly monotonously increasing function and let

loss() be an arbitrary loss function, then the minimizer of the loss function

N∑
i=1

loss(yi, f(xi)) + Ω(‖f‖φ)

can be represented as

f(x) =
N∑
i=1

vik(xi,x)

• ‖f‖φ =
√
〈f , f〉φ is a norm in a reproducing kernel Hilbert space (RKHS) and

includes ‖f‖φ =
√

wTw

• So kernel solutions are possible for all cost functions we are considering!
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