
Kernels

Volker Tresp
Summer 2018

1



Smoothness Assumption

• In the lecture on basis functions, the assumption was that f(x) can be approximated

by a weighted sum of basis functions

• Alternatively, it might make sense to have a preference for smooth functions: functional

values close in input space should have similar functional values

• In the next figure it might make sense that the functional values at xi and x are

similar (smoothness assumption)

• Thus, one might prefer the smooth (continuous) function in favor of the dashed

function

2





Introduction Kernels

• One can implement smoothness assumptions over kernel functions

• A kernel function k(xi,x) = kxi(x) determines, how neighboring functional values

are influenced when f(xi) is given

• Example: Gaussian kernel

3





Kernels and Basis Functions

• It turns out that there is a close relationship between kernels and basis functions:

k(xi,x) = kxi(x) =

Mφ∑
j=1

φj(xi)φj(x)

• It follows the symmetry: k(xi,xj) = kxi(xj) = k(xj,xi) = kxj(xi)

• Thus: given the Mφ basis functions, this equation gives you the corresponding kernel

• Note the kernel is a function of weighted basis functions. The weight φj(xi) are the

amplitudes of the basis functions at xi

• As we see later: For positive definite kernels, we can also go the other way: given the

kernels I can give you a corresponding set of basis functions (not unique)

4







Kernel Prediction

• Regression

ŷ(x) =
N∑
i=1

vik(xi,x)

• Classification

ŷ(x) = sign

 N∑
i=1

vik(xi,x)


• The solution contains as many kernels as there are data points N (independent on

the number of underlying basis functions Mφ)

5



Kernels: Infinite Number of Basis Functions

• Thus with Mφ → ∞ : I can work with a finite number N of kernels, instead of an

infinite number of basis functions

• Thus no matter how many training data points: a perfect fit can be possible (with

λ/σ2 → 0)

• So in neural networks, one makes a model of basis functions more flexible by intro-

ducing hidden parameters for tuning the basis functions, with kernels one makes the

model more flexible by working with an infinite number of fixed basis functions

6



One Kernel for Each Data Point

7





Starting with the Cost Function

• We start with the penalized least squares cost function for models with basis functions

• Regularized cost function

costpen(w) =
N∑
i=1

(yi −
Mφ∑
j=1

wjφj(xi))2 + λ

Mφ∑
j=1

w2
j

= (y −Φw)T (y −Φw) + λwTw

where Φ is the design matrix design with (Φ)i,j = φj(xi) .

8



Implicit Solution

• We calculate the first derivatives and set them to zero,

∂costpen(w)

∂w
= −2ΦT (y −Φw) + 2λw = 0

It follows that one can write,

wpen =
1

λ
ΦT (y −Φwpen)

9



Approach

• This is not an explicit solution (wpen appears on both sides of the equation). But we

know now, that we can write the solution as a linear combination of the input vectors

wpen = ΦTv =
N∑
i=1

vi~φ(xi)

• Note that we have a sum over N data points (and not Mφ basis functions)

10



Kernel Model

• We immediately get,

f̂(x) =

Mφ∑
j=1

wj,penφj(xi) = ~φ(x)Twpen

= ~φ(x)TΦTv =
N∑
i=1

vik(xi,x)

with v = (v1, . . . , vN)T and

k(xi,x) = ~φ(xi)
T ~φ(x) =

Mφ∑
k=1

φk(xi)φk(x)

• But note that not all functions that can be represented by the basis functions can be

written in this form, only the functions that minimize the cost function!

11



A New Form of the Cost Function

• We can substitute the constraints, and obtain as a cost function with kernel weights

as free parameters

costpen(v) = (y −ΦΦTv)T (y −ΦΦTv) + λvTΦΦTv

= (y −Kv)T (y −Kv) + λvTKv

Explicitly

costpen(v) =
N∑
i=1

yi − N∑
j=1

vjk(xi, xj)

2

+ λ

N∑
i=1

N∑
j=1

vivjk(xi, xj)

12



Here K is an N ×N matrix with elements

ki,j = ~φ(xi)
T ~φ(xj) =

Mφ∑
k=1

φk(xi)φk(xj)

• An important result: We can write the cost function, such that only dot

products of the basis functions appear (i.e., the kernels), but not the

basis functions themselves!



Kernel Parameters

• Now we can take the derivative of the cost function with respect to v (note, that

K = KT )

∂costpen(v)

∂v
= 2K(y −Kv) + 2λKv

such that

vpen = (K + λI)−1y

13



Kernel Prediction

• A prediction can be written as (w,v are the penalized least squares solutions)

f̂(x) = ~φ(x)Tw = ~φ(x)TΦTv =
N∑
i=1

vik(xi,x)

with

k(xi,x) = ~φ(x)Ti
~φ(x)

• Another important result: we can write the solution such that only dot products are

used; the solution can be written as a weighted sum of N kernels.

• We want to point out again, that not each function that can be written as
∑
j wjφj(x)

can be expressed in this way, only a subset of the functions and in particular that one

which minimizes the cost function based on the specific N training data points!

14



One Kernel for Each data Point

15



With only One Training Data Point

• With only one training data point we get

f(x) = v1k(x1,x)

• As discussed previously:

16



Manifold View

• If data are on a low-dimensional manifold in high dimensions, Gaussian kernels would

be placed on the manifold and the kernel width can be adapted to fit the complexity

of the function on the manifold

• Outside the manifold, f(x)→ 0

17



Comments and Interpretation of a Kernel

• This is interesting, since there can be more basis functions than data points; in particu-

lar this result is valid, even if we work with an infinite number of basis functions!

• It is even possible to start with the kernels, without knowing exactly, what the under-

lying basis functions are

• A dot product between to data points xi and xi′ in input space is

18



Input Space

• The empirical covariance between the dimensions in input space with normalized zero-

mean data is

cov(j, j′) =
1

N

N∑
i=1

xi,jxi,j′

• A dot product between to data points in input space is

xTi xi′ =
M∑
j=1

xi,jxi′,j

which is the linear kernel

19



Basis Function Space

• The empirical covariance between the dimensions in basis function space is

covφ(j, j′) =
1

N

N∑
i=1

φj(xi)φj′(xi)−

 1

N

N∑
i=1

φj(xi)

 1

N

N∑
i=1

φj′(xi)


• A dot product between two data points in basis function space is

~φ(xi)
T ~φ(xi′) =

Mφ∑
j=1

φj(xi)φj(xi′) = k(xi,xi′)

and this is exactly the kernel!

20



Gauss Process

• Assume that the prior distribution of of the basis function weights has a zero mean

and a unit covariance

w ∼ N (0, I)

• Then the functions have zero mean and a covariance of

cov(f(xi), f(xj)) = cov(~φT (xi)w, ~φT (xj)w) = ~φT (xi) cov(w)~φ(xj)

= k(xi,xj)

• This interpretation is used in Gaussian processes: the kernel represents the covariance

between the function values, evaluated at different inputs

21



Computational Complexity

• When N >> Mφ it is computationally more efficient to work with basis functions

(requiring M3
φ + M2

φN operations). When Mφ >> N , the kernel version is more

efficient, requiring N3 +N2Mφ operations. If the kernels are known a priori (i.e., if

they do not need to be calculates via dot product), the kernel solution requires N3

operations.

22



Mercer’s Theorem

• Still, not all functions are valid kernel functions. Mercer’s theorem addresses that issue

• (From Vapnik: The nature of statistical learning theory. Springer, 2000)

• Mercer’s Theorem: To guarantee, that the symmetric functions k(x, z) = k(z,x)

from L2 permits an expansion as

k(z,x) =
∞∑
h=1

λhφ
T
h (z)φh(x)

with positive coefficients λh > 0, it is necessary and sufficient, that∫ ∫
k(z,x)g(x)g(z)dxdz > 0

for all g 6= 0, for which ∫
g2(x)dx <∞

23



• The theorem says, that for so-called positive-definite kernels (“Mercer kernels”), a

decomposition in basis functions is possible!

• Each kernel-matrixK is then also positive definite, aTKa > 0, for all vectors a 6= 0.

A symmetric matrix is positive definite iff all its eigenvalues are positive

• The results also generalize to the non-negative (positive-semidefinite) case



Kernel Design

• Linear Kernel

k(xi,x) = xTi x

The kernel matrix is then K = XXT . (Recall that the empirical correlation between

the input dimensions is XTX)

• Polynomial kernel (1)

k(xi,x) = (xTi x)d

The basis functions are all ordered polynomials of order d

• Polynomial kernel (2)

k(xi,x) = (xTi x +R)d

The corresponding basis functions are all polynomials of order d or smaller. R is a

tuning parameter

24



• Gauß-kernels (RBF-kernels)

k(xi,x) = exp

(
−

1

2s2
‖xi − x‖2

)
These kernels correspond to infinitely many Gaussian basis functions

• Sigmoid (“neural network”) kernels

k(xi,x) = sig
(
xTi x

)



Comment on Valid Kernels

• A necessary condition is that k(xi,xj) = k(xj,xi)!

• So any function of ‖xi− xj‖ would be a good candidate. These kernels also appear

symmetrical, like a Gaussian kernel

• But note that also any function of ‖xTi xj‖ would be a good candidate. They don’t

necessarily look symmetrical, like the linear kernel or the polynomial kernel

• Here is an example of a kernel that violates the necessary condition

k(xi,xj) = xTi xj + α‖xi‖2

• The kernels discussed here are called dot-product kernels, Mercer kernels, or kernels

in a reproducing kernel Hilbert space

• Kernels are widely used in mathematics. The kernels used here should, for example,

not to be confused with the kernels used in kernel smoothing!

25



Sometimes it is Easier to Define Sensible Kernels than it is to
Define Sensible Basis Functions

• Example: Classification of chemical graphs

– Molecules can be described as graphs (structural formula, chemical graph theories)

– Task: I know from N molecules, if these have a particular medical effect (training

data). Can I predict the medical effect of a new molecule?

– Features which describe a chemical structure formula are difficult to describe; it

is easier to define graph kernels

• Example: Classification of a person in a social network

– Kernels reflect similarity with respect to a network topology. For example, one can

define a kernel based on the number of overlapping substructures of two persons

in their mutual neighborhoods

26



Representer Theorem

• Representer Theorem: Let Ω be a strictly monotonously increasing function and let

loss() be an arbitrary loss function, then the minimizer of the loss function

N∑
i=1

loss(yi, f(xi)) + Ω(‖f‖φ)

can be represented as

f(x) =
N∑
i=1

vik(xi,x)

• ‖f‖φ =
√
〈f , f〉φ is a norm in a reproducing kernel Hilbert space (RKHS) and

includes ‖f‖φ =
√

wTw

• So kernel solutions are possible for all cost functions we are considering!

27


