
Feature Spaces, Manifolds, and
Deep Generative Models

Volker Tresp
Summer 2018

1

Review: Manifold in Basis Function Space

• In the lecture on basis functions, we discussed the map from input space to basis

function space

• In the following figure, data is originally in 1-D space and is mapped via two basis

functions in a 2-D space

• In the 2-D basis function space, data lies in a 1-D manifold

2

Data Represented in Feature Space

• Often the situation is different: there is a low-dimensional data space with h ∈ RMh

but the observed data are in a high-dimensional feature space x ∈ RM

• Note: I keep M for the dimension of the input space with x ∈ RM and h ∈ RMh

for the latent space, which we cannot access

• Thus in the observed input space, the data are distributed on a manifold

3

Data Represented in Some Feature Space

• We cannot measure data in the data generating space h ∈ RMh

• Instead, we measure data in feature space x ∈ RM either supplied by nature or an

application expert (feature engineering)

• Features map

x = featureMap(h)

• We say that the data lies in an Mh-dimensional data manifold in h ∈ RMh but is

observed in an M -dimensional feature space x ∈ RM

• In the spirit of the discussion in the lecture on the Perceptron: The map from h to y

might be low-dimensional and explainable, but we can only measure x

4

Feature Engineering

• In a way, features are like basis functions, but supplied by nature or an application

expert (feature engineering)

• The definition of suitable features for documents, images, gene sequences, ... is a very

active research area: feature engineering

• (One point of Deep Learning is that it does not require feature engineering!)

5

Overview

• 1: In (high-dimensional) feature space x ∈ RM the map might be simple and easy to

model; after all, a feature map transforms a typically low-dimensional h ∈ RMh to a

high-dimensional x ∈ RM , where the map to output might have low complexity (B,

in next figure)

• 2: Place RBFs on the manifold; putting RBFs on the low dimensional data manifold

is better than putting RBfs also in areas with no data

• 3: Learn an encoder, i.e., a mapping x→ h. This is called dimensionality reduction

and might reduce the input to the essentials: input noise reduction. h can then be the

input to the following neural network or basis function model. Sometimes the different

dimensions of h can be interpreted! (C, D in next figure)

• 4: Learn a generator, i.e., a mapping h→ x. In autoencoders an encoder is learned

together with a decoder and the decoder might serve as a generator. In the GANs

models, a generator is learned directly. Now we can consider a novel m which generates

a novel x; if x represents images, the models contain convolutional layers and the

generated image can be quite impressive!

6

2: Putting Resources on the Data Manifold (“Kernels”)

• Assume Mh < M

• In this situation, it might work to put the RBFs on the data manifold, where we

assume that the manifold can be represented by the training data points

• Use one RBF per data point. The centers of the RBFs are simply the data points

themselves and the widths are determined via some heuristics (or via cross validation,

see later lecture)

7

Clustering to Finding the Data Manifold

• It might be sensible to first group (cluster) data in feature space and to then use the

cluster centers as positions for the Gaussian basis functions; the widths of the Gaussian

basis functions might be derived from the sample covariance of the data in the cluster

• Even simpler: we assign a unique output label to each cluster

• Sometimes, data are clustered to start with

8

Class Specific Data Manifold

• There might be different manifolds for each class

• In latent space, the different classes might occupy different subspaces

• This assumption is the basis for tangent distance algoritm and tangent prop (beyond

the scope of this lecture)

9

3: Learning an Encoder

• If we have,

x = featureMap(h)

we might want to learn an approximate inverse of the feature map

h = ge(x)

• ge(x) is called an encoder

10

Data Represented in a Noisy Feature Space

• Learning an encoder is especially important, when the feature map included some

noise,

x = featureMap(h+ ~δ) + ~ε

where ~δ and ~ε are noise vectors

11

Autoencoder

• How can we learn h = ge(x) if we do not measure h ?

• Consider a decoder (which might be close to the feature map)

x = gd(h)

But again, h is not measured

• We now simply concatenate the two models and get

x̂ = gd(ge(x))

• This is called an autoencoder

12

Linear Autoencoder

• If the encoder and the decoder are linear functions, we get a linear autoencoder

• A special solution is provided by the principal component analysis (PCA)

Encoder:

h = ge(x) = VT
Mh

x

Decoder:

x̂ = gd(h) = VMh
h = VMh

VT
Mh

x

• The VMh
are the first Mh columns of V, where V is obtained from the SVD

X = UDVT

13

PCA as Dimensionality Reduction

• The PCA is often used as dimensionality reduction; the figure shows basis functions

which are applied to the latent representation

14

Neural Network Autoencoder

• In the Neural Network Autoencoder, the encoder and the decoder are modelled by

neural networks

• The cost function is

cost(W,V) =
N∑
i=1

M∑
j=1

(xi,j − x̂i,j)2

where x̂i,1, . . . , x̂i,M are the outputs of the neural network autoencoder

15

Comments and Applications

• Since h cannot directly be measured, it is called a latent vector in a latent space.

The representation of a data point xi in latent space hi is called its representation or

embedding

• Distances in latent space are often more meaningful than in data space, so the latent

representations can be used in information retrieval

• The reconstruction error ‖x− x̂‖2 is often large for patterns which are very different

from the training data; the error thus measures novelty, anomality. This can be a basis

for fraud detection and plant condition monitoring

• The encoder can be used to pretrain the first layer in a neural network; after initiali-

zation, the complete network is then typically trained with backpropagation, including

the pretrained layer

16

Stacked Autoencoder (SAE)

• The figure represents the idea of a stacked autoencoder: a deep neural network with

weights initialized by a stacked autoencoder

17

Denoising Autoencoder (DAE)

• Denoising autoencoder,

xi = gd(ge(xi+ εi))

where εi is random noise added to the input!

• Prevents an autoencoder from learning an identity function

18

More

• Sparse autoencoders: add a penalty, e.g,
∑Mh
k=1 |hk|, to encourage sparsity of the

latent representation

• Contractive autoencoder (CAE): add a penalty, e.g,

Mh∑
k=1

M∑
j=0

(
∂hk
∂xj

)2

(squared Frobenius norm of the Jacobian); encourages mapping to a low-dimensional

manifold; the denoising autoencoder seems to have similar properties

19

4: Learning a Generator

• Note that the decoder part of an autoencoder can be used as a generator: simply

select a new h and generate the corresponding data point x

• This idea works better, when it is enforced that the latent representations for the

training data are approximately Gaussian distributed: each dimension is independently

Gaussian distributed, with unit variance

• This is the idea of the Variational Autoencoder (VAE)

20

VAE

• After training (the details are beyond the scope of the lecture), we get approximately

hk = N (hk;meank, σ
2
k)

and we can easily generate samples from this distribution

21

Convolutional VAE

• The VAE contains convolutional layers in the encoder and deconvolutional layers in

the decoder

• Deconvolution layer is a very unfortunate name and should rather be called a trans-

posed convolutional layer

• A convolutional VAE can generate quite realistically looking images

• Often the different latent dimensions have a real world interpretation

22

Generating Faces

• The next figures show applications to face images

• PVAE: Plain Variational Autoencoder trained with pixel-by-pixel loss in the image

space

• DCGAN: Deep Convolutional Generative Adversarial Networks

• VAE 123, VAE 345: Instead of using pixel-by-pixel loss, deep feature consistency bet-

ween the input and the output of a VAE is enforced (by using layers relu1 1, relu2 1,

relu3 1 and relu3 1, relu4 1, relu5 1 respectively.)

• Source: Deep Feature Consistent Variational Autoencoder Xianxu Hou, Linlin Shen,

Ke Sun, Guoping Qiu

23

Manipulating Faces

• We randomly choose 1,000 face images with eyeglass and 1,000 without eyeglass

respectively from the CelebA dataset

• The two types of images are fed to our encoder network to compute the latent vectors,

and the mean latent vectors are calculated for each type respectively, denoted as

zpos eyeglass and zneg eyeglass

• We then define the difference zpos eyeglass−zneg eyeglass as eyeglass-specific latent

vector zeyeglass. In the same way, we calculate the smiling-specific latent vector

zsmiling

• Then we apply the two attribute-specific vectors to different latent vectors z by simple

vector arithmetic like z+ αzsmiling or z+ αzeyeglass

24

Generative Adversarial Networks (GANs)

• Can we train a generator without an autoencoder, i.e., without an encoder?

• Let’s assume we have a larger number of generators available; which one is the best

one? Let’s assume that each generator generates a data set

• The best generator might be the one where a discriminator (i.e., a binary neural

network classifier) trained to separate training data from the data from a particular

generator, cannot separate both. Then one might say that approximately Ptrain(x) =

Pgen(x)

• In GAN models, there is only one generator and one discriminator and both are trained

jointly

25

Cost Function

• The discriminator is simply trained to maximize the negative cross entropy cost

function; the targets for the training data are 1 and for the generated data 0

• The generator is simply trained to minimize the negative cross entropy cost function,

where backpropagation is performed via the discriminator (zero-sum game)

• Optimal parameters are

(w,v) = argmax
w

argmin
v

cost(w,v)

where

cost(w,v) =
∑

xi∈train
log gdis(xi,w)+

∑
xi∈gen

log[1−gdis(ggen(hi,v),w)]

26

Uninformative or Informative Information

• If the generator is close to perfect, the discriminator is not able to separate the two

classes

• The generator obtains rich gradient information

27

Illustration

• Consider the following figure; h is one-dimensional Gaussian distributed: P (h) =

N(h; 0,1), Mh = 1

• The generator is x = hv, where M = 2; the data points are on a 1-D manifold in

2-D space; here: v1 = 0.2, v2 = 0.98

• The training data are generated similarly, but with x = hw and w1 = 0.98,

w2 = 0.2

• The discriminator is y = sig(|x1|w1+|x2|w2), withw1 = 0.71,w2 = −0.71

• After updating the generator, we might get v1 = 0.39, v2 = 0.92

• After updating the discriminator, we might get w1 = 0.67, w2 = −0.74

28

DCGAN

• Deep Convolutional GAN (DCGAN): the generator and the discriminator contain con-

volutional layers

29

cGAN and InfoGan

• Conditional GAN (cGAN): An additional input to the generator and the discriminator

is the class label

• InfoGan: An additional input to the generator is the class label. The dicriminator also

predicts the class label

30

Unpaired Image-to-Image Translation

• Example task: turn horses in images into zebras

• One could train a generator Generator A2B with horse images as inputs and the

corresponding zebra images as output; this would not work, since we do not have

matching zebra images

• But consider that we train a second generator Generator B2A which has zebra images

as inputs and generates horse images

• Now we can train two autoencoders

x̂horse = gB2A(gA2B(xhorse))

x̂zebra = gA2B(gB2A(xzebra))

• These constraints are enforced using the cycle consistency loss

31

CycleGAN

• CycleGAN does exactly that

• CycleGAN adds two discriminators, trained with the adversial loss:

• discriminatorA tries to classify real horses from generated horses

• discriminatorB tries to classify real zebras from generated zebras

• If the generated horses and zebras are perfect, both fail to discriminate

• Both the cycle consistency loss and the adversial loss are used in training

32

Applications

• For discriminant machine learning: Outputs of the convolutional layers of the discri-

minator can be used as a feature extractor, with simple linear models fitted on top of

these features using a modest quantity of (image-label) pairs

• For discriminant machine learning: When labelled training data is in limited supply,

adversarial training may also be used to synthesize more training samples

• cGANs: GAN architecture to synthesize images from text descriptions, which one

might describe as reverse captioning. For example, given a text caption of a bird such

as“white with some black on its head and wings and a long orange beak”, the trained

GAN can generate several plausible images that match the description

• cGANs not only allow us to synthesize novel samples with specific attributes, they also

allow us to develop tools for intuitively editing images - for example editing the hair

style of a person in an image, making them wear glasses or making them look younger

• cGANs are well suited for translating an input image into an output image, which is

a recurring theme in computer graphics, image processing, and computer vision

33

General Comment

• In general, models for P (x) can be used to generate new data (by sampling from the

distribution) and to evaluate the likelihood of a new data point

• Gaussian mixtures, other mixture models

• Kalman filters, Markov models, hidden Markov models, Bayesian networks, Markov

networks

• Deep Learning: Deep Boltzmann machines

• At this stage, GAN and VAE excel in generating realistic image samples

34

Appendix*

35

Distribution*

• Both the VAE decoder and a GAN generator produce probability distributions

P (x) =

∫
N (x; g(h), ε2I)N (h; 0, I))dh

where latent features are generated from N (h; 0, I)) and where we added a a tiny

noise with variance ε2 to the generator

• With ε2 → 0, points outside the manifold will get zero probability density and points

on the manifold get infinite density

36

