
Basis Functions

Volker Tresp
Summer 2018

1

Nonlinear Mappings and Nonlinear Classifiers

• Regression:

– Linearity is often a good assumption when many inputs influence the output

– Some natural laws are (approximately) linear F = ma

– But in general, it is rather unlikely that a true function is linear

• Classification:

– Linear classifiers also often work well when many inputs influence the output

– But also for classifiers, it is often not reasonable to assume that the classification

boundaries are linear hyperplanes

2

Trick

• We simply transform the input into a high-dimensional space where the regressi-

on/classification might again be linear!

• Other view: let’s define appropriate features (feature engineering)

• Other view: let’s define appropriate basis functions

• Challenge: XOR-type problem with patterns

0 0 → +1
1 0 → −1
0 1 → −1
1 1 → +1

3

XOR-type problems are not Linearly Separable

4

Trick: Let’s Add Basis Functions

• Linear Model: input variables: x1, x2

• Let’s consider the product x1x2 as additional input

• The interaction term x1x2 couples two inputs nonlinearly

5

With a Third Input z3 = x1x2 the XOR Becomes Linearly
Separable

f(x) = 1− 2x1 − 2x2 + 4x1x2 = φ0(x)− 2φ1(x)− 2φ2(x) + 3φ3(x)

with φ0(x) = 1, φ1(x) = x1, φ2(x) = x2, φ3(x) = x1x2

6

f(x) = 1− 2x1 − 2x2 + 4x1x2

7

Separating Planes

8

A Nonlinear Function

9

f(x) = x− 0.3x3

Basis functions φ0(x) = 1, φ1(x) = x, φ2(x) = x2, φ3(x) = x3 und w =

(0,1,0,−0.3)

10

Basic Idea

• The simple idea: in addition to the original inputs, we add inputs that are calculated

as deterministic functions of the existing inputs, and treat them as additional inputs

• Example: Polynomial Basis Functions

{1, x1, x2, x3, x1x2, x1x3, x2x3, x
2
1, x

2
2, x

2
3}

• Basis functions {φm(x)}Mφ
0=1

• In the example:

φ0(x) = 1 φ1(x) = x1 φ5(x) = x1x3 ...

• Independent of the choice of basis functions, the regression parameters are calculated

using the well-known equations for linear regression

11

Linear Model Written as Basis Functions

• We can also write a linear model as a sum of basis functions with

φ0(x) = 1, φ1(x) = x1, . . . φM(x) = xM

12

Review: Penalized LS for Linear Regression

• Multiple Linear Regression:

fw(x) = w0 +
M∑
j=1

wjxj = xTw

• Regularized cost function

costpen(w) =
N∑
i=1

(yi − fw(xi))2 + λ

M∑
j=0

w2
j

• The penalized LS-Solution gives

ŵpen =
(
XTX + λI

)−1
XTy with X =

 x1,0 . . . x1,M
.
xN,0 . . . xN,M

13

Regression with Basis Functions

• Model with basis functions:

fw(x) = w0 +

Mφ∑
m=1

wmφm(x)

• Regularized cost function with weights as free parameters

costpen(w) =
N∑
i=1

yi − Mφ∑
m=0

wmφm(xi)

2

+ λ

MΦ∑
m=0

w2
m

• The penalized least-squares solution

ŵpen =
(
ΦTΦ + λI

)−1
ΦTy

14

with

Φ =

 1 φ1(x1) . . . φMφ
(x1)

.
1 φ1(xN) . . . φMφ

(xN)

Nonlinear Models for Regression and Classification

• Regression:

fw(x) = w0 +

Mφ∑
m=1

wmφm(x)

As discussed, the weights can be calculated via penalized LS

• Classification:

ŷ = sign(fw(x)) = sign

w0 +

Mφ∑
m=1

wmφm(x)

The Perceptron learning rules can be applied, or some other learning rules for linear

classifiers, if we replace 1, xi,1, xi,2, ... with 1, φ1(xi), φ2(xi), ...

15

Which Basis Functions?

• The challenge is to find problem specific basis functions which are able to effective-

ly model the true mapping, resp. that make the classes linearly separable; in other

words we assume that the true dependency f(x) can be modelled by at least one

of the functions fw(x) that can be represented by a linear combination of the basis

functions, i.e., by one function in the function class under consideration

• If we include too few basis functions or unsuitable basis functions, we might not be

able to model the true dependency

• If we include too many basis functions, we need many data points to fit all the unknown

parameters (This sound very plausible, although we will see in the lecture on kernels

that it is possible to work with an infinite number of basis functions)

16

Radial Basis Function (RBF)

• We already have learned about polynomial basis functions

• Another class are radial basis functions (RBF). Typical representatives are Gaussian

basis functions

φj(x) = exp

(
−

1

2s2
‖x− cj‖2

)

17

Three RBFs (blue) form f(x) (pink)

18

Optimal Basis Functions

• So far all seems to be too simple

• Here is the catch: in some cases, the number of “sensible” basis functions increases

exponentially with the number of inputs

• If d is a critical lower length scale of interest and inputs are constraint in a ball of

diameter L, then one would need on the order of (L/d)M RBFs in M dimensions

• We get a similar exponential increase for polynomial basis functions; the number of

polynomial basis functions of a given degree increases quickly with the number of

dimensions (x2); (x2, y2, xy); (x2, y2, z2, xy, xz, yz), . . .

• The most important challenge: How can I get a small number of relevant basis func-

tions, i.e., a small number of basis functions that define a function class that contains

the true function (true dependency) f(x)?

19

Forward Selection: Stepwise Increase of Model Class Complexity

• Start with a linear model

• Then we stepwise add basis functions; at each step add the basis function whose

addition decreases the training cost the most (greedy approach)

• Examples: Polynomklassifikatoren (OCR, J. Schürmann, AEG)

– Pixel-based image features (e.g., of hand written digits)

– Dimensional reduction via PCA (see later lecture)

– Start with a linear classifier and add polynomials that significantly increase per-

formance

– Apply a linear classifier

20

Backward Selection: Stepwise Decrease of Model Class
Complexity (Model Pruning)

• Start with a model class which is too complex and then incrementally decrease com-

plexity

• First start with many basis functions

• Then we stepwise remove basis functions; at each step remove the basis function

whose removal increases the training cost the least (greedy approach)

• A stepwise procedure is not optimal. The problem of finding the best subset of K

basis functions is NP-hard

21

Analysis of Dimensionality

• Consider input space dimension M . All data points are normalized to zero mean and

lie in a ball of diameter L

• Let us consider that d is a minimum length scale of interest, e.g., d = 0.1. (ν =

L/2d would be an upper frequency of interest); thus y might change significantly

(e.g., from 1 to -1) if I move a distance d in some direction

• Thus L/d is a complexity measure: the larger L/d, the more complex the function;

in the following figure; (L/d)M corresponds to the number of maxima and mimima

of the underlying function

• Then to be able to fit a nonlinear function, one would need on the order of

N >> (L/d)M

data points

22

HH: Curse of Dimensionality

• Here M is high, and L/d is high (HH)

• Data points are given in the M -dimensional space, where M is large

• L/d is also large

• With N >> (L/d)M would indicate that we need exponentially many training data

points to learn about the functions

• This is the famous “Curse of Dimensionality”

23

LH: Blessing of Dimensionality

• Data points are given in the M -dimensional space, where M is small

• L/d is large

• With a sufficient amount of training data, N >> (L/d)M , the data can explore the

relevant input space

• If I map the inputs space to a basis function space of dimension Mφ, the data points

still lie on an M -dimensional submanifold in the basis function space. So the estimate

N >> (L/d)M might still be valid

• With Mφ = N basis functions, I can get a perfect fit/separation of the training data

in basis function space (regression/classification). (Basis functions must be linearly

independent).

• This is what I would call the “Blessing of Dimensionality”

• In basis function space, with N ≈Mφ effectively Lφ/dφ ≈ 1

24

• Still: not all basis function would lead to linear models that perform well on test data;

a common choice are RBFs, with optimized length scale s

• With Mφ ≈ N , we should definitely apply regularization! A perfect fit on the training

data is not our ultimate goal; we are interested in generalization performance

HL: No Curse of Dimensionality

• Data points are given in the M -dimensional space, where M is large

• L/d is small

• Then N >> (L/d)M) can still be acceptable

• But: methods that directly depend on the concept of a neighborhood might not work

well, since random data points tend to become equidistant in high dimensions. Ex-

ample: nearest-neighbor classifiers; for these type of model, we again have a“curse of

dimensionality”

• Trivially, the fourth situation, small M and small L/d is quite easy to model (LL)

25

HL: Illustration

• With M = 500 input dimensions, we generated N = 1000 random data points

{xi}1000
i=1

• “Curse of dimensionality”: near equidistance between data points (see next figure):

distance-based methods, such as nearest-neighbor classifiers, might not work well

• No “Curse of dimensionality” if supervised learning is used and the function has low

complexity, L/d ≈ 1:

• A linear regression model with N = 1000 training data points gives excellent results

26

Data Represented in Some Feature Space

• M is small and L/d is large but we cannot measure x ∈ RM

• Instead, we measure data in feature space z ∈ RMz either supplied by nature or an

application expert (feature engineering)

• Features map

x→ (z1(x), z2(x), . . . , zMz(x))T

• We say that the data lie in an M -dimensional data submanifold in RMz

• Of particular interest is when M is small, L/d is large, and Mz is large; LH in F

• In the spirit of the discussion in the lecture on the Perceptron: The map from x to y

might be low-dimensional and explainable, but we can only measure z

27

LH in F: Data in Feature Space

• M is small and L/d is large but we collect data in some high-dimensional feature

space Mz

• In a way, features are like basis functions, but supplied by nature or an application

expert (feature engineering)

• If Mz > (L/d)M linear regression/classification in feature space might solve the

problem, or a small number of wide RBFs might solve the problem

• The definition of suitable features for documents, images, gene sequences, ... is a very

active research area: feature engineering

• (One point of Deep Learning is that it does not require feature engineering!)

28

LH in F: Putting Resources on the Data Submanifold
(“Kernels”)

• Sometimes a feature space Mz is large, but still Mz << (L/d)M

• In this situation, it might work to put the RBFs on the data submanifold, where we

assume that the manifold can be represented by the training data points

• Use one RBF per data point. The centers of the RBFs are simply the data points

themselves and the widths are determined via some heuristics (or via cross validation,

see later lecture)

29

LH in F: Clustering to Finding the Data Submanifold

• Sometimes, data are clustered in M -space, and also in Mz-space

• It might be sensible to first group (cluster) data in feature space and to then use the

cluster centers as positions for the Gaussian basis functions; the widths of the Gaussian

basis functions might be derived from the sample covariance of the data in the cluster

• Even simpler: we assign a unique output label to each cluster

30

Data Represented in a Noisy Feature Space

• Finally, we assume that the features are noisy. Instead of

z = featureMap(x)

we might have

z = featureMap(x + ~δ) + ~ε

where ~δ and ~ε are noise vectors

• Now data do not lie on the M -dimensional manifold anymore

• We call this situation: LH in noisy F

31

LH in noisy F: Mapping to the Submanifold

• One might attempt to find the original data submanifold and then apply basis functions

z→ x̂→ φ(x̂)→ y

• Most of the times, the mapping z→ x̂ is performed by a linear transformation (PCA,

later lecture); deep neural autoencoders can also perform nonlinear transformations

(lecture on deep learning)

32

Example: Image Classification

• Typically we treat an image as an input feature vector to a supervised system; we

treat the pixels as features!

• Mz is quite large, e.g., Mz = 256× 256 = 65536!

• Thus z256(k−1)+l = greyV alue(k, l)

• One can attempt to find the submanifold via a linear transformation

x = VTz

• Alternatively, we simply take M low dimensional frequency components (2-D cosine

transform)

• Then we apply a basis function classifier (see next slide)

33

A Function as a Vector

• Note that we have treated a 2-D function (an image) as a vector in a vector space

• This view on functions was introduced and formalized by David Hilbert (Hilbert space)

34

Conclusions

• Basis functions perform a nonlinear transformation from input space to basis function

space

• For a good model fit, for RBF basis functions, one needs Mφ >> (L/d)M , N >>

(L/d)M , thus either M should be small or L/d ≈ 1

• If one selects Mφ ≈ N , one requires on the order of N3 computations to learn the

parameters

• A practical bound is (L/d)M << 100000, for systems with basis functions to be

computationally feasible

35

