
Linear Regression

Volker Tresp
2018

1



Learning Machine: The Linear Model / ADALINE

• As with the Perceptron we start with

an activation functions that is a linearly

weighted sum of the inputs

h =
M∑
j=0

wjxj

(Note: x0 = 1 is a constant input, so

that w0 is the bias)

• New: The activation is the output

(no thresholding)

ŷ = fw(x) = h

• Regression: the target function can take

on real values
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Method of Least Squares

• Squared-loss cost function:

cost(w) =
N∑
i=1

(yi − fw(xi))2

• The parameters that minimize the cost function are called least squares (LS) estimators

wls = arg min
w

cost(w)

• For visualization, we take M = 1 (although linear regression is often applied to

high-dimensional inputs)
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Least-squares Estimator for Regression

One-dimensional regression:

fw(x) = w0 + w1x

w = (w0, w1)T

Squared error:

cost(w) =
N∑
i=1

(yi − fw(xi))2

Goal:

wls = arg min
w

cost(w) w0 = 1, w1 = 2, var(ε) = 1
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Least-squares Estimator in Several Dimensions

General Model:

ŷi = fw(xi) = w0 +
M∑
j=1

wjxi,j

= xTi w

w = (w0, w1, . . . wM)T

xi = (1, xi,1, . . . , xi,M)T
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Linear Regression with Several Inputs
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Contribution to the Cost Function of one Data Point
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Predictions as Matrix-vector product

The vector of all predictions at the training data is

ŷ =


ŷ1
ŷ2
. . .
ŷN

 = Xw
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Gradient Descent Learning

• Initialize parameters (typically using small random numbers)

• Adapt the parameters in the direction of the negative gradient

• With fw(xi) =
∑M
j=0wjxi,j

cost(w) =
N∑
i=1

(yi − fw(xi))2

• The parameter gradient is (Example: wj)

∂cost

∂wj
= −2

N∑
i=1

(yi − fw(xi))xi,j

• A sensible learning rule is

wj ←− wj + η

N∑
i=1

(yi − fw(xi))xi,j
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ADALINE-Learning Rule

• ADALINE: ADAptive LINear Element

• The ADALINE uses stochastic gradient descent (SGD)

• Let xt and yt be the training pattern in iteration t. The we adapt, t = 1,2, . . .

wj ←− wj + η(yt − ŷt)xt,j j = 0,1,2, . . . ,M

• η > 0 is the learning rate, typically 0 < η << 0.1

• This is identical to the Perceptron learning rule. For the Perceptron yt ∈ {−1,1},
ŷt ∈ {−1,1}
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Analytic Solution

• The ADALINE is optimized by SGD

• Online Adaptation: a physical system constantly produces new data: the ADALINE

(SGD in general) can even track changes in the system

• With a fixed training data set the least-squares solution can be calculated analytically

in one step (least-squares regression)
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Cost Function in Matrix Form

cost(w) =
N∑
i=1

(yi − fw(xi))2

= (y −Xw)T (y −Xw)

y = (y1, . . . , yN)T

X =

 x1,0 . . . x1,M
. . . . . . . . .
xN,0 . . . xN,M
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Necessary Condition for an Optimum

• A necessary condition for an optimum is that

∂cost(w)

∂w

∣∣∣∣
w=wopt

= 0
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One Parameter: Explicit

• fw(x1) = x1w1 and cost(w1) =
∑N
i=1(yi − xi,1w1)2

• (chain rule: inner derivative times outer derivative)

∂cost(w1)

∂w1
=

N∑
i=1

∂(yi − xi,1w1)

∂w1
2(yi − xi,1w1)

= −2
N∑
i=1

xi,1(yi − xi,1w1) = −2
N∑
i=1

xi,1yi + 2w1

N∑
i=1

xi,1xi,1

• Thus

w1,l =

 N∑
i=1

xi,1xi,1

−1
N∑
i=1

xi,1yi
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One Parameter: in Vector Notation

• fw(x1) = x1w1 and cost(w1) = (y − x̄1w1)T (y − x̄1w1), where x̄1 =

(x1,1, . . . , xN,1)T

• (chain rule: inner derivative times outer derivative)

∂cost(w1)

∂w1
=
∂(y − x̄1w1)

∂w1
2(y − x̄1w1)

= −2x̄T1 (y − x̄1w1) = −2x̄T1y + 2w1x̄
T
1 x̄1

• Thus

w1,ls =
(
x̄T1 x̄1

)−1
x̄T1y
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General Case

• fw(x) = xTw and cost(w) = (y −Xw)T (y −Xw)

• (chain rule: inner derivative times outer derivative)

∂cost(w)

∂w
=
∂(y −Xw)

∂w
2(y −Xw)

= −2XT (y −Xw) = −2XTy + 2wXTX

• Thus

wls =
(
XTX

)−1
XTy
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Setting First Derivative to Zero

ŵls = (XTX)−1XTy

Complexity (linear in N):

O(M3 +NM2)

ŵ0 = 0.75, ŵ1 = 2.13
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Derivatives of Vector Products

• We have used

∂

∂x
Ax = AT ∂

∂x
xTx = 2x

∂

∂x
xTAx = (A + AT )x

• Comment: one also finds the conventions,

∂

∂x
Ax = A

∂

∂x
xTx = 2xT

∂

∂x
xTAx = xT (A + AT )
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Stability of the Solution

• When N >> M , the LS solution is stable (small changes in the data lead to small

changes in the parameter estimates)

• When N < M then there are many solutions which all produce zero training error

• Of all these solutions, one selects the one that minimizes
∑M
i=0w

2
i = wTw (regu-

larised solution)

• Even with N > M it is advantageous to regularize the solution, in particular with

noise on the target
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Linear Regression and Regularisation

• Regularised cost function (Penalized Least Squares (PLS), Ridge Regression, Weight

Decay): the influence of a single data point should be small

costpen(w) =
N∑
i=1

(yi − fw(xi))2 + λ

M∑
i=0

w2
i

ŵpen =
(
XTX + λI

)−1
XTy

Derivation:

∂costpen(w)

∂w
= −2XT (y −Xw) + 2λw = 2[−XTy + (XTX + λI)w]
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ADALINE-Learning Rule with Weight Decay

• Let xt and yt be the training pattern in iteration t. Then we adapt, t = 1,2, . . .

wj ←− wj + η[(yt − ŷt)xt,j −
λ

N
wj] j = 0,1,2, . . . ,M
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Toy Example: Univariate Model (Pearson Correlation
Coefficient)

• We generated N = 100 data points with M = 3 (no bias)

• x1 and x2 are highly correlated. x3 is independent from x1, x2, and y

• We generate output data with y = x1+ε, where ε stands for independent noise with

standard deviation 0.2 and thus variance of 0.04. Thus ground truth parameters are

wtrue = (1,0,0)T . Note that, y causally only depends on x1

• All variables are normalized to 0 mean and variance 1.

• In unit variate models, with only one input, the weights are identical to the sample

Pearson correlation coefficients (here: rj =
∑
i yixi,j/N) between the output and

the input, I get r1 = 0.99, r2 = 0.96, r3 = −0.21

• A deeper analysis (see Appendix) reveals that the estimate r1 has a mean of 1 and

a standard deviation of 0.02. r1 reflects the dependency of y on x1
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• The second coefficient, r2 = 0.96, does not reflect a causal effect, but reflects

the fact that x1 and x2 are highly correlated, and thus also y and x2 (correlation

does not imply causality). A deeper analysis (see Appendix) reveals that with perfect

correlation between x1 and x2, the estimate r1 also would have a mean of 1 and a

standard deviation of 0.02

• The third value r3 is correctly closer to 0, but not really small in magnitude. A deeper

analysis (see Appendix) reveals that the estimate r3 has a mean of 0 and a standard

deviation of approximately of 0.1



Toy Example: Least Squares Regression

• We get experimentally:

XTX =

 100 98 −18
98 100 −16
−18 −16 100


Approximately Ncov(x); we see the strong correlation between x1 and x2

(XTX)−1 =

 0.255 −0.249 0.007
−0.249 0.253 −0.005
0.007 −0.005 0.010



XTy = (99,97,−20)T

This is approximately Nr; we see the strong correlation between both x1 and x2

with y
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Toy Example: Least Squares Regression (cont’d)

• We get

wls = (XTX)−1XTy = (1.137,−0.150,−0.018)T

• Interestingly, linear regression pretty much identifies the correct causality, withwls,1 ≈
1 and wls,2 ≈ 0 !

• A deeper analysis (see Appendix) reveals that wls,1 has a mean of 1 and a standard

deviation of 0.1. So the estimator is unbiased but the uncertainty is larger then in

the unit variate analysis

• ŵ2 has mean of zero and a standard deviation of 0.1. Thus the bias is removed if

compared to Pearson!

• wls,1 and wls,2 are negatively correlated. Note, that wls,1+wls,2 = 0.987 which

is close to the true 1.

• wls,3 = −0.018 is much closer to 0 than the sample Pearson correlation coefficient

r3 = −0.21
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• A deeper analysis (see Appendix) reveals that wls,3 has a mean of 0 and a standard

deviation of 0.02. Here it is important to see that the standard deviation of the

spurious input is largely reduced!

• Intuitive explanation: Consider that I can write the cost function as
∑
i([yi−w1xi,1−

w2xi,2]−w3xi,3). Thus w3xi,3 only needs to fit the residual target [yi−w1xi,1−
w2xi,2] instead of the original target yi.

• Overall, in regression, the causal influence of x1 stands out much more clearly! Both

the influence of the correlated input x2 and the noise input x3 are largely reduced

• Application in healthcare: Same data. Consider that x2 is a medication and y the

outcome. If I do a univariate analysis, I would see a strong positive influence of x2

on y (the medication works). Only if I include the so-called confounder x1 in the

regression model, it becomes clear that the confounder x1 is the cause and not the

treatment x2. The treatment has no significant effect!





Toy Example: Penalized Least Squares Regression

• We get with λ = 0.6:

XTX + λI =

 100.6 98 −19
98 100.6 −17
−19 −17 100.6



(XTX + λI)−1 =

 0.197 −0.191 0.005
−0.191 0.195 −0.003
0.005 −0.003 0.010



XTy = (99,97,−20)T

wpen = (XTX + λI)−1XTy = (0.990,−0.005,−0.021)T

• Note that wpen,2 is even closer to ground truth!
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Remarks

• The Pearson correlation coefficient does not reflect causality

• The regression coefficients display causal behavior, much more closely

• If one is only interested in prediction accuracy: adding inputs liberally in regression

can be beneficial if regularization is used (in ad placements and ad bidding, hundreds

or thousands of features are used)

• The weight parameters of useless (noisy) features become close to zero with regulari-

zation (ill-conditioned parameters)

• Regularization is especially important when N ≈M , and N < M

• If parameter interpretation is essential or if, for computational reasons, one wants to

keep the number of inputs small:

• — Forward selection; start with the empty model; at each step add the input that

reduces the error most
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• — Backward selection (pruning); start with the full model; at each step remove the

input that increases the error the least

• But no guarantee, that one finds the best subset of inputs or that one finds the true

inputs



Experiments with Real World Data: Data from Prostate Cancer
Patients

8 Inputs, 97 data points; y: Prostate-specific antigen

10-times cross validation error
LS 0.586

Best Subset (3) 0.574
Ridge (Penalized) 0.540
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Examples where High-dimensional Linear Systems are Used

• Ranking in search engines (relevance of a web page to a query)

• Ad placements: where to put which ad for a user

• GWAS
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Genome-wide Association Study (GWAS)

• Trait (here: the disease systemic sclerosis) is the output and the SNPs are the inputs

• The major allele is encoded as 0 and the minor allele as 1. Thus wj is the influence

of SNP j on the trait.

• Shown is the (log of the p-value) of wj ordered by the locations on the chromosomes.

The weights can be calculated by penalized least squares (ridge regression)

• Solely based on the Pearson correlation, the plot would show many more (non-causal)

associations. The regression analysis reduces the apparent influence of noncausal cor-

related inputs and the influence of uncorrelated inputs

• In practice one often uses an elastic net penalty: λ2
∑
j w

2
j + λ1

∑
j |wj| where

the lasso penalty λ1
∑
j |wj| increases sparsity
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Appendix: A Deeper Analysis of Pearson versus Regression*

• The Pearson correlation coefficient is in the mean approximately (1,1,0). The varian-

ce of r1, and r2 can be estimated as var = σ2/N = 0.04/100 = 0.0004 and

standard deviation stdev =
√

var = 0.02. For r3 we get a variance var(r3) =

var(y)/N = 1/N = 0.01, and a standard deviation of stdev(r3) = 0.1.

Comment: r2 does not reflect the true dependency; the variance of r3 is relatively

large.

• Since linear regression is unbiased, the parameter estimates have mean 1,0,0 (un-

biased solutions). We get for the covariances

cov(wls) = σ2(XTX)−1

The variances are then (we consider the diagonal terms)

var(wls,1) = var(wls,2) ≈ 0.04× 0.25 = 0.01

var(wls,3) ≈ 0.04× 0.01 = 0.0004,
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and

stdev(wls,1) = stdev(wls,2) ≈ 0.2

stdev(wls,3) ≈ 0.02

• Thus the estimates are unbiased; the uncertainty of wls,3 is greatly reduced and thus

closer to zero!


