Linear Algebra (Review)

Volker Tresp 2018

Vectors

- k, M, N are scalars
- ullet A one-dimensional array ${f c}$ is a column vector. Thus in two dimensions,

$$\mathbf{c} = \left(\begin{array}{c} c_1 \\ c_2 \end{array}\right)$$

- c_i is the *i*-th component of ${f c}$
- ullet $\mathbf{c}^T = (c_1, c_2)$ is a row vector, the transposed of \mathbf{c}

Matrices

• A two-dimensional array **A** is a matrix, e.g.,

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix}$$

- If A is an $N \times M$ -dimensional matrix,
 - then the transposed \mathbf{A}^T is an $M \times N$ -dimensional matrix
 - the columns (rows) of ${f A}$ are the rows (columns) of ${f A}^T$ and vice versa

$$\mathbf{A}^T = \begin{bmatrix} a_{1,1} & a_{2,1} \\ a_{1,2} & a_{2,2} \\ a_{1,3} & a_{2,3} \end{bmatrix}$$

Addition of Two Vectors

- $\bullet \ \mathsf{Let} \ c = a + d$
- Then $c_j = a_j + d_j$

Multiplication of a Vector with a Scalar

- $\mathbf{c} = k\mathbf{a}$ is a vector with $c_j = ka_j$
- C = kA is a matrix of the dimensionality of A, with $c_{i,j} = ka_{i,j}$

Scalar Product of Two Vectors

• The **scalar product** (also called dot product) is defines as

$$\mathbf{a} \cdot \mathbf{c} = \mathbf{a}^T \mathbf{c} = \sum_{j=1}^M a_j c_j$$

and is a scalar

• Special case:

$$\mathbf{a}^T \mathbf{a} = \sum_{j=1}^M a_j^2$$

Matrix-Vector Product

- A matrix consists of many row vectors. So a product of a matrix with a column vector consists of many scalar products of vectors
- If A is an $N \times M$ -dimensional matrix and c is an M-dimensional column vector
- Then d = Ac is an N-dimensional column vector d with

$$d_i = \sum_{j=1}^{M} a_{i,j} c_j$$

Matrix-Matrix Product

- A matrix also consists of many column vectors. So a product of matrix with a matrix consists of many matrix-vector products
- If A is an $N \times M$ -dimensional matrix and C an $M \times K$ -dimensional matrix
- Then $\mathbf{D} = \mathbf{AC}$ is an $N \times K$ -dimensional matrix with

$$d_{i,k} = \sum_{j=1}^{M} a_{i,j} c_{j,k}$$

Multiplication of a Row-Vector with a Matrix

• Multiplication of a row vector with a matrix is a row vector. If A is a $N \times M$ -dimensional matrix and \mathbf{d} a N-dimensional vector and if

$$\mathbf{c}^T = \mathbf{d}^T A$$

Then c is a M-dimensional vector with $c_j = \sum_{i=1}^N d_i a_{i,j}$

Outer Product

• Special case: Multiplication of a column vector with a row vector is a matrix. Let \mathbf{d} be a N-dimensional vector and \mathbf{c} be a M-dimensional vector, then

$$\mathbf{A} = \mathbf{d}\mathbf{c}^T$$

is an $N \times M$ matrix with $a_{i,j} = d_i c_j$

Example:

$$\begin{bmatrix} d_1c_1 & d_1c_2 & d_1c_3 \\ d_2c_1 & d_2c_2 & d_2c_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix}$$

Matrix Transposed

- ullet The transposed ${f A}^T$ changes rows and columns
- We have

$$\left(\mathbf{A}^T\right)^T = \mathbf{A}$$

$$(\mathbf{AC})^T = \mathbf{C}^T \mathbf{A}^T$$

Unit Matrix

 $\mathbf{I} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & & & \dots \\ 0 & \dots & 0 & 1 \end{pmatrix}$

Diagonal Matrix

• $N \times N$ diagonal matrix:

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} & \dots & 0 \\ & & \dots & \\ 0 & \dots & 0 & a_{N,N} \end{pmatrix}$$

Matrix Inverse

- ullet Let ${f A}$ be an N imes N square matrix
- ullet If there is a unique inverse matrix ${\bf A}^{-1}$, then we have

$$A^{-1}A = I \quad AA^{-1} = I$$

ullet If the corresponding inverse exist, $(AC)^{-1}=C^{-1}A^{-1}$

Orthogonal Matrices

ullet Orthogonal Matrix (more precisely: Orthonormal Matrix): ${f R}$ is a (quadratic) orthogonal matrix, if all columns are orthonormal. It follows (non-trivially) that all rows are orthonormal as well and

$$\mathbf{R}^T \mathbf{R} = \mathbf{I} \quad \mathbf{R} \mathbf{R}^T = \mathbf{I} \quad \mathbf{R}^{-1} = \mathbf{R}^T \tag{1}$$

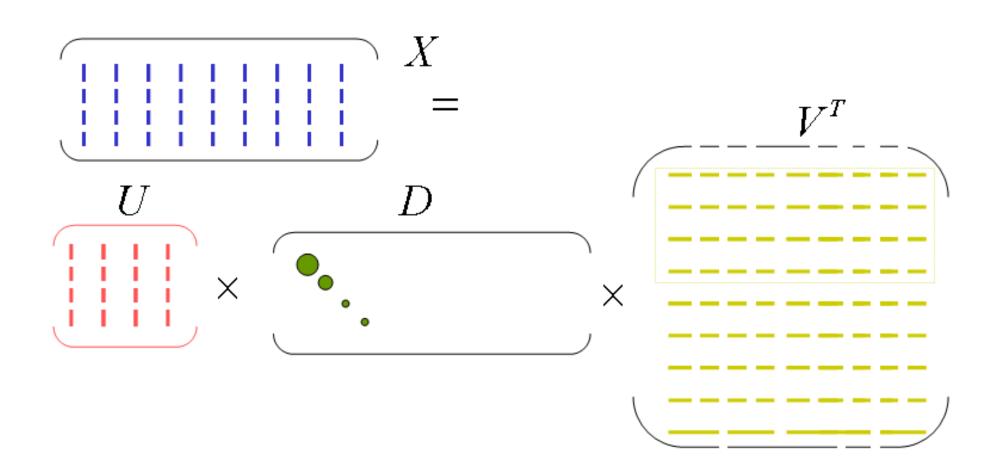
Singular Value Decomposition (SVD)

ullet Any N imes M matrix ${f X}$ can be factored as

$$X = UDV^T$$

where ${\bf U}$ and ${\bf V}$ are both **orthonormal** matrices. ${\bf U}$ is an $N\times N$ Matrix and ${\bf V}$ is an $M\times M$ Matrix.

- D is an $N \times M$ diagonal matrix with diagonal entries (singular values) $d_i \ge 0, i = 1, ..., \tilde{r}$, with $\tilde{r} = \min(M, N)$
- ullet The ${f u}_j$ (columns of ${f U}$) are the left singular vectors
- ullet The ${f v}_i$ (columns of ${f V}$) are the right singular vectors
- ullet The d_j (diagonal entries of ${f D}$) are the singular values



Appendix*

- A vector is defined in a vector space. Example: $\mathbf{c} \in \mathbb{R}^2$ and $\mathbf{c} = c_i \mathbf{e}_1 + c_2 \mathbf{e}_2$ with an orthogonal basis $\mathbf{e}_1, \mathbf{e}_2$. We denote with \mathbf{c} both the vector and its component representation
- A matrix is a 2-D array that is defined with respect to a vector space
- The dot product is identical to the **inner product** $\langle \mathbf{a}, \mathbf{c} \rangle$ for Euclidean vector spaces with orthonormal basis vectors \mathbf{e}_i

$$\langle \mathbf{a}, \mathbf{c} \rangle = \left(\sum_{i} a_{i} \mathbf{e}_{i} \right) \left(\sum_{i'} c_{i'} \mathbf{e}_{i'} \right) = \sum_{i} a_{i} c_{i} = \mathbf{a} \cdot \mathbf{c} = \mathbf{a}^{T} \mathbf{c}$$

- ullet An outer product is also called a dyadic product or an **outer product** (when related to vector spaces) and is written as $\mathbf{d} \otimes \mathbf{c}$. Note that a matrix is generated from two vectors
- An outer product is a special case of a **tensor product**

• $\mathbf{C} = \mathbf{A}\mathbf{B}^T$, can be written as a sum of outer products $\mathbf{C} = \sum_j \mathbf{a}_j \mathbf{b}_j^T$, where \mathbf{a}_j is a columns vector of \mathbf{A} and \mathbf{b}_j is a columns vector of \mathbf{B}