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Empirical Model Comparison
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Model Comparison

• Let’s consider the prediction of a modelM for input x and with parameters w

f(x,w,M)

• Example: M can be a neural network with a specific architecture. Another example:

M is a linear regression model

• We define a cost function (loss function)

costx,y[w,M]

• Example (quadratic loss):

cost
q
x,y[w,M] = (y − f(x,w,M))2

• We will use the terms cost, loss and error exchangeably
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Further Examples of Cost Functions

• Misclassification cost (y ∈ {−1,1}):

costmx,y[w,M] =
1

2
|y − sign(f(x,w,M))|

• Logistic regression (y ∈ {−1,1}):

costx,y[w,M] =
N∑
i=1

log (1 + exp [−yif(x,w,M)])

• Perceptron (y ∈ {−1,1}):

costx,y[w,M] = | − yf(x,w,M)|+

• Vapnik’s optimal hyperplanes (y ∈ {−1,1}):

costx,y[w,M] = |1− yf(x,w,M)|+
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• Cross-entropy cost (negative log-likelihood cost)

costlx,y[w,M] = − logP (y|x,w,M)



Generalization Cost

• In statistics one is often interest in the estimation of the value and the uncertainty of

particular parameters. Example: is w1 significantly less than zero?

• In machine learning one is often interested in the generalization cost which is the

mean expected loss over all possible seen and unseen data, for any fixed w

costP (x,y)[w,M] =

∫
costx,y[w,M]P (x, y) dxdy

• A typical assumption is that P (x, y) = P (x)P (y|x) is fixed but unknown
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Estimating the Generalization Cost Over Test Data

• An estimator of the generalization cost is the mean test set cost

costP (x,y)[w,M] ≈ costtest[w,M] =
1

T

T∑
i=1

costxi,yi[w,M]

which is the mean cost on the T test data points with (xi, yi ∈ test)

• This is an unbiased estimator, for any fixed w
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Estimating the Generalization Cost Over Training Data

• An estimator of the generalization cost is also the mean training set cost

costP (x,y)[w,M] ≈ costtrain[w,M] =
1

N

N∑
i=1

costxi,yi[w,M]

which is the mean cost on the N training data points with (xi, yi ∈ train)

• This is also an unbiased estimator, for any w
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Estimating the Generalization Cost of the Best Fit

• Now comes the difference: if, for each training set, I look at the parameters that

minimize the training error, then, on average, the training set error is smaller than the

generalization error for these parameters!

• Let ŵ|train be the estimator (the minimizer of the training cost) on a training set

D = train. In other words ŵ|train minimizes the cost on the training data set.

• We define the mean training set cost of this best parameter vector, evaluated on

the training data as

costtrain[ŵ|train,M] =
1

N

N∑
i=1

costxi,yi[ŵ|train,M]

Here, (xi, yi) ∈ train
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Analysis of Different Quantities

• One quantity we are interested in is the generalization cost of a particular modelM
with particular best-fit parameters ŵ|train.

costP (x,y)[ŵ|train,M]

• Another quantity of interest is the generalization cost averaged over all training sets

of size N (where the training data are generated from P (x, y)),

EtraincostP (x,y)[ŵ|train,M]

Note that here we analyse the performance of a particular model M but not of a

fixed w; but on the ŵ optimized on the particular training data set!
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Training Set Cost and Generalization Cost

• It turns out that the if we calculate the expected mean over all training sets of the

same size, then

Etrain

{
costP (x,y)[ŵ|train,M]− costtrain[ŵ|train,M]

}
≥ 0

• Thus in expectation, the training cost underestimates the generalization cost for the

estimated ŵ. Thus the performance of a trained model should not be evaluated on the

training set but on the test set, which is an unbiased estimator of the generalization

cost, also for ŵ|train.

• This expression is the focus in a frequentist analysis!
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Model Selection via Test Data

• This procedure can be applied with huge amounts of available data, N >> M

• Divide the data set randomly into a training data set and a test data set

• Train all models only on the training data: find the best parameters for each model

under consideration

• Evaluate the generalization performance based on the test set performance and get

costtest[ŵ|train,M] for the different models, as an estimate of the generalization

costs costP (x,y)[ŵ|train,M] for a particular modelM with a particular parameter

vector ŵ|train
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Cross Validation

• Cross Validation uses all data in turn for testing

• Consider K- fold cross validation; typical: K = 5 oder K = 10

• The data is partitioned into K sets of approximately the same size

• For k = 1, . . . ,K: The k−th fold is used for testing and the remaining data is used

for training (finding the best parameters)
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Evaluating Performance with Cross Validation

• For each model one gets K test costs

costtestk[ŵ|traink,M], k = 1, . . . ,K

• Now we now consider the generalization costs averaged over the parameter estimates

obtained from different training data sets of size N

EtraincostP (x,y)[ŵ|train,M]

• We can estimate this average as

EtraincostP (x,y)[ŵ|train,M] ≈ mean(costtestk[ŵ|traink,M])

=
1

K

K∑
k=1

costtestk[ŵ|traink,M]
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• If we simplify notation and set m = mean(costtestk[ŵ|traink,M]) then we can

estimate the variance of m as

V̂ ar =
1

K(K − 1)

K∑
k=1

(costtest[ŵ|traink,M]−m))2

This can be used to decide if two models significantly differ in generalization perfor-

mance

• Note, that we evaluate a modelM and not some specific parameter vector





Paired Tests

• With few data one can use a paired test

• Basic idea: let’s assume that K = 10; if Mi in all test sets is better than Mj,

then this is s strong indication thatMi performs better, even if the variation in test

set performance masks this behavior (error bars of the estimate are too large)

• Calculate the mean difference between both models

MeanDiffi,j =
1

K

K∑
k=1

costtestk[ŵ|traink,Mi]− costtestk[ŵ|traink,Mj]

and analyse if this difference is significantly different from zero; this can be shown by

employing the test statistics for the paired t-test.

• Alternative: Wilcoxon signed-rank test

14





Empirical Tuning of
Hyperparameters
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Hyperparameter

• In addition to the normal parameters, often one or several hyperparameters need to

be tuned as well. Example: regularization weight λ

• The tuning should be done on the training fold. Part of the training fold becomes

another fold on which the hyperparameters are tuned
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Hyperparameters(cont’d)

• Let’s call the folds parameter training fold, hyperparameter fold, and test fold

• In the outer loop we generate training data and test data (as part of K-fold cross

validation)

• In the inner loop we divide the training data into parameter training fold and hyperpa-

rameter fold. We train the parameters using the parameter training fold with different

values of the hyperparameters. We then select the hyperparameter values which give

best performance on the hyper-parameter fold

• We use these hyperparameter values to optimize the model on all training data, and

evaluate this model on the test set
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Learning Theories
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Overview: Statistical Theories and Learning Theories
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Frequentist Statistics
• Rejection of prior probability
• Dominant in the last century
• Fisher

• p-value
• Pearson und Neyman

• Conf .interv., hypoth. test

(Subjective) Bayesian Statistics:
• Subjective knowledge can be formulated as

probabilities and can be integrated into statistical
modeling

VC-Theory (Statistical Learning
theory)

• No assumption on function
• Worst-case analysis
• Vapnik–Chervonenkis

MDL – Theorie
(minim. description length)

• Information Theory
• Rissanen, Wallace,

Boulton

PAC Learning (probably approximate
correct)

• Similar to VC-Theory
• Also considers computational complexity
• Valient

Regularization theory
• Regularization: -> increases stability of

solution; ill-poses problems become
well-posed

• Hadamard, Tikhonov

Robust Statistics
• Non-Gaussian

likelihoods
• Huber

Probability
• Example: Bester linear Estimator
• Not really statistics but uses simple

quantities (correlations) that can be
estimated from data

Least squares principle
• Gauss
• Gauss Likelihood

Stein estimation
• Biased estimators

can beat ML
• Stein estimator

Objective Bayesian Statistic
• Non-informative Priors (Jeffrey)
• Maximum Entropy Priors

Empirical Bayes (technicality)
• Type II likelihood
• Evidence Framework

Algorithmic Statistics
• Focus on predictions (not

parameter estimation)
• Breiman, Huber, Friedman

• Green:  Frequent.
• Blue:   Bayes
• Gold:

Learn. Theory
• Red:    Rest

Empirical Risc Minimization
• Vapnik



Learning Theories

• A: Classical Frequentist Approaches

– Cp Statistics

– Akaikes Information Criterion (AIC)

• B: Bayesian approaches

– Strict Bayes: model averaging instead of model selection

– Bayesian model selection and Bayesian Information Criterion (BIC)

• C: Modern Frequentist Approaches

– Minimum Description Length (MDL) Principle (Appendix)

– Statistical Learning Theory (Vapnik-Chervonenkis (VC) Theory)
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A:Classical Frequentist Approaches

21



Frequentist Approaches

• We are again interested in the generalization cost averaged over the parameter esti-

mates from different training data sets of size N

EtraincostP (x,y)[ŵ|train,M]

• Thus we evaluate the quality of a particular modelM
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Bias-Variance Decomposition

• We assume that the (fixed) true function can be realized by a function out off the

function class and we assume a quadratic cost function. Then one can decompose for

the squared loss

Etraincost
q
P (x,y)

[ŵ|train,M] = Bias2 + Var + Residual
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Residual

• The residual cost is simply the cost of the true model

Residual =

∫
(ftrue(x)− y)2P (x, y)dxdy = cost

q
P (x,y)

[ftrue]

• In regression simply the noise variance σ2
ε
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Bias

• The bias is the mean square of the difference between the true model and the average

prediction of all models trained with different training sets of size N . A regularized

model with λ > 0 would typically be biased. A linear model is biased if the true

dependency is quadratic. With m(x) = Etrain(f(x, ŵ|train))

Bias2 =

∫
[m(x)− ftrue(x)]2 P (x)dx

= cost
q
y=ftrue(x),P (x)

[m(x)]

25



Variance

• The variance is the mean square of the difference between trained models and the

average prediction of all models trained with different training sets of size N

Var =

∫
Etrain[f(x, ŵ|train)−m(x)]2P (x)dx

= Etraincost
q
{y=m(x),P (x)}[(f(x, ŵ|train))]
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Background: Some Rules for Variances and Traces

• Let y be a random vector with covariance Cov(y) and let A be a fixed matrix

If z = Ay, then: Cov(z) = ACov(y)AT

• The trace is the sum over the diagonal elements of a matrix. One can show that

trace[Φ(ΦTΦ)−1ΦT ] = M

where M is the number of columns of the matrix Φ. Special case: when Φ has an

inverse, then Φ(ΦTΦ)−1ΦT = I and the trace of I is obviously M
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Example: Linear Models

• We assume that the data has been generated with

yi = φ(xi)w + εi

where: εi is independent noise with variance σ2

• We take the ML estimator which is known to be unbiased and is

ŵ = (ΦTΦ)−1ΦTy

Thus we now know that Bias = 0.

• With the rule we just learned we can calculate the parameter covariance

Cov(ŵ) = (ΦTΦ)−1ΦTCov(y)Φ(ΦTΦ)−1

= σ2(ΦTΦ)−1ΦTΦ(ΦTΦ)−1 = σ2(ΦTΦ)−1

• Great, now we know how certain the parameters are. We can now evaluate Var by
taking a large sample of P (x). Unfortunately such a large sample is not available and
we simply approximate it with the training data inputs.

28



Variance Estimate

• The mean predictions of our model at the training data inputs is then f = Φw

• Applying the covariance formula again as before, we get

Cov(f) = ΦCov(w)ΦT

• For the variance we really only need the mean over the diagonal terms

Var(f) =
1

N
trace(ΦCov(w)ΦT )

29



Example: Linear Models (cont’D)

• Substituting, we get

V̂ar =
1

N
trace(ΦCov(w)ΦT ) =

σ2

N
trace(Φ(ΦTΦ)−1ΦT )

• Now we apply our trace-rule and get

V̂ar =
M

N
σ2

• The solution is surprisingly simple, but makes sense: The predictive variance increases

with more noise on the data and with more free parameters and decreases with more

data!

30



Generalization Error of the Best Fit

• Thus the generalization error for the parameters that minimize the training set costs

is on average

Etraincost
q
P (x,y)

[ŵ|train,M] ≈ σ2 +
M

N
σ2 = σ2M +N

N

• Thus on average the generalization error for the parameters optimized on the training

set is larger by M
N σ

2, if compared to the generalization error of the best possible

model.
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Training Error of the Best Fit

• We estimate σ2 as

σ̂2 =
N

N −M
cost

q
train[ŵ|train]

We get

Etraincost
q
train[ŵ|train] =

N −M
N

σ2 = σ2 −
M

N
σ2

• Thus the training error is on average smaller than the generalization of the best possible

model and the difference is again M
N σ

2
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CP -statistics

• By substitution we now get

Etraincost
q
P (x,y)

[ŵ|train,M] ≈
N +M

N −M
cost

q
train[ŵ|train]

= cost
q
train[ŵ|train] + 2

M

N
σ̂2

• This is called Mallot’s CP -statistics

• Thus in model selection on would chose the model where Mallot’s CP is smallest

• We can refer this to the earlier discussion and say

Etrain

{
costP (x,y)[ŵ|train,M]− costP (x,y)[ŵ|train,M]

}
≈ 2

M

N
σ̂2
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Considering Bias

• Discussion: if two models are unbiased, the estimate of the noise level should be more

or less the same and the CP -statistics will chose the smaller one. If the model becomes

too simple (we get bias), the training error and thus also the estimate of the noise

will also start to contain the bias term

σ̂2 =
N

N −M
cost

q
train[ŵ|train]

• Thus, as a heuristics, we can also apply the CP -statistics to biased models if each

model estimates its individual noise variance

• Thus one can argue that the smallest unbiased model will give the optimal CP -

statistics
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Bias Estimate

• One might estimate

B̂ias2 = σ̂2 − σ̂2
∞

whereas σ̂2
∞ is the estimate for a sufficiently large unbiased model
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Conclusion

• The estimates are ̂Residual = σ̂2
∞

B̂ias = σ̂2 − σ̂2
∞

V̂ar =
M

N
σ̂2
∞
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Conceptual Plots

• The next figures show the behavior of bias, variance and residual and mean training

and mean test costs

• The complexity is controlled by the number of parameters M , or the number of epochs

(stopped training), of the inverse of the regularization parameter

• Note that the best models have a Bias > 0
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Akaikes Information Criterion (AIC)

• The analysis so far was only valid for models that minimized the squared error. Consider

approaches where the log-likelihood is minimized

l = logL =
N∑
i=1

logP (yi|xi,wML)

• In other words

costlx,y[w,M] = − logP (y|x,w,M)

• Here, one can apply Akaike’s Information Criterion (AIC) (as defined in Wikipedia)

AIC/N = 2

(
−

1

N
logL+

M

N

)
= 2

(
costltrain[ŵ|train,M] +

M

N

)
• A model with a smaller AIC is preferred
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Comments on AIC

• AIC is equivalent to Cp for Gaussian noise with known noise variance:

AIC/N = 2
1

2σ2

1

N

N∑
i=1

(yi − f(xi,w))2 + 2
M

N
=

1

σ2
CP

• The expression

AIC

2N
=

(
costltrain[ŵ|train,M] +

M

N

)
estimates the log-likelihood cost on new data
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AIC for Likelihood Cost Function and for 1/0 Cost Function
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Proof: Bias-Variance Decomposition

• One can reduce the problem to estimating the decomposition for one parameter. µ is

the parameter and x are the data. We add and subtract Etrain(µ̂)) and we add and

subtract µ (true parameter). Then,

EtrainEx(µ̂−x)2 = EtrainEx
[
(µ̂− Etrain(µ̂)) + (Etrain(µ̂)− µ) + (µ− x)

]2
• One gets

EtrainEx(µ̂− x)2 = Bias2 + Var + Rest

Rest = Ex(x− µ)2

Bias = Etrain(µ̂)− µ

Var = Etrain[µ̂− Etrain(µ̂)]2
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Proof: Bias-Variance Decomposition (cont’d)

EtrainEx(µ̂−x)2 = EtrainEx
[
(µ̂− Etrain(µ̂)) + (Etrain(µ̂)− µ) + (µ− x)

]2
• We get 6 terms. Three are: Bias2, Var, Rest. We need to show that the three

cross terms become zero.

EtrainEx[(µ̂−Etrain(µ̂))(Etrain(µ̂)−µ)] = Etrain[(µ̂−Etrain(µ̂))(Etrain(µ̂)−µ)]

= (Etrain(µ̂)− µ)Etrain[µ̂− Etrain(µ̂)] = Bias× 0 = 0

EtrainEx[(µ̂−Etrain(µ̂))(µ−x)] = Etrain[µ̂−Etrain(µ̂)]Ex[µ−x] = 0×0 = 0

EtrainEx[(Etrain(µ̂)−µ)(µ−x)] = Etrain[Etrain(µ̂)−µ]Ex[µ−x] = Bias×0 = 0
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Adding Variances

• When we generalize to several variables (or even functions) it might seem odd that

we can simply add the variances. But note the difference

• For the the variance of the sum we have

V ar(x+ y) = V ar(x) + V ar(y)− 2Cov(x, y)

• For the sum of the variances we have (using E(a+ b) = E(a) + E(b))

E(V ar(x) + V ar(y)) = V ar(x) + V ar(y)
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Bayesian Approaches
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The Bayesian Perspective

• The Bayesian approach does not require model selection!

• One formulates all plausible models under consideration and specifies a prior probability

for those models

P (Mi)

• The posterior prediction becomes

P (y|x) =
∑
i

P (Mi|D)

∫
P (y|x,w,Mi)P (w|D,Mi)dw
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Bayesian Model Selection

• The principled Bayesian approach is sometimes impractical and a model selection is

performed

• A posteriori model probability

P (M|D) ∝ P (M)P (D|M)

• If one assumes that all models have the same prior probability, and the important term

is the so-called marginal likelihood, or model evidence

P (D|M) =

∫
P (D|w,M)P (w|M)dw
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Our Favorite Linear Model

• Fortunately we can sometimes calculate the evidence without solving complex inte-

grals. From Bayes formula we get

P (w|D,M) =
P (D|w,M)P (w|M)

P (D|M)

and thus

P (D|M) =
P (D|w,M)P (w|M)

P (w|D,M)

• This equation must be true for any w. Let’s substitute wMAP and take the log

logP (D|M) = logP (D|wMAP ,M)+logP (wMAP |M)−logP (wMAP |D,M)

• The first term is the log-likelihood and the second the prior. Both are readily available.

So we only need to take care of the last term
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• Recall from a previous lecture that P (w|D,M) is a Gaussian with mean wMAP

and

cov(w|D,M) = σ2
(
XTX +

σ2

α2
I

)−1

• Thus at wMAP the exponent is zero and we are left with

logP (wMAP |D,M) = log
1√

(2π)M det cov(w|D,M)

= −
M

2
log(2π)−

1

2
log det cov(w|D,M)

• Thus,

logP (D|M) = logP (D|wMAP ,M) + logP (wMAP ,M)

+
M

2
log(2π) +

1

2
log det cov(w|D,M)



• For large N , one can approximate

log det cov(w|D) ≈ −M logN + constants

(for large N , cov(w|D) becomes diagonal and the diagonal entries become propor-

tional to N−1; Thus det(cov(w|D,M)) ∝ N−M is then the product over the

diagonals)

Thus

logP (D|M) ≈ logP (D|wMAP ,M) + logP (wMAP ,M)

+
M

2
log(2π)−

1

2
M logN + constants

• If we consider models with different number of parametersM , then logP (D|wMAP )+

logP (wMAP ) might produce a larger value (better fit) for the model with the lar-

ger M . But for the larger model, we subtract a larger M logN , so we obtain a

compromise between both terms at the optimum



Laplace Approximation of the Marginal Likelihood

• By simplifying the previous equation and using the ML (Maximum Likelihood) estimate

instead of the MAP estimate one obtains

logP (D|M) ≈ logP (D|ŵML,M)−
M

2
logN

• The Bayesian information criterion (BIC) is -2 times this expression (definition in

Wikipedia)

BIC = −2 logP (D|ŵML,M) +M logN

• This approximation is generally applicable (not just for regression)
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Bayesian Information Criterion (BIC)

• We get

BIC

2N
= costltrain[ŵ|train,M] +

1

2

M

N
logN

Compare

AIC

2N
= costltrain[ŵ|train,M] +

M

N

• 1
2
M
N logN is an estimate of the difference between the mean test likelihood and the

mean training log-likelihood

• BIC corection is by a factor 1
2 logN larger than the AIC correction and decreases

more slowly (logN)/N with the number of training examples
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C: Modern Frequentist Approaches
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Minimum Description Length (MDL)

• Based on the concept of algorithmic complexity (Kolmogorov, Solomonoff, Chaitin)

• Based on these ideas: Rissanen (and Wallace, Boulton) introduced the principal of the

minimum description length (MDL)

• Under simplifying assumptions the MDL criterion becomes the BIC criterion
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Statistical Learning Theory

• The Statistical Learning Theory (SLT) is in the tradition of the Russian mathematicians

Andrey Kolmogorov and Valery Ivanovich Glivenko and the Italian mathematician

Francesco Paolo Cantelli

• SLT was founded by Vladimir Vapnik and Alexey Chervonenkis (VC-Theory)

• Part of Computational Learning Theory (COLT); similar to PAC (Probably approxi-

mately correct learning) Learning (Leslie Valiant)
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Function Classes

• Data is generated according to some distribution P (x, y). This distribution is fixed

but otherwise arbitrary.

• In SLT theory one considers functions f(x) out of a class of measurable functions

M. Example:M is the class of all linear classifiers with M parameters and f(x) is

one of those. We will write again f(x,w,M)

• SLT does not assume that the best possible function ftrue(x) is contained inM
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SLT Bounds

• Let’s assume a random sample of P (x, y), i.e. train

• SLT considers the difference between costm
P (x,y)

[w,M] and costmtrain[w,M], for

any w

• We now consider binary classification without noise (i.e., classes are in principal sepa-

rable)

• Consider the function, for which this difference is maximum for a given train and then

average over all train of size N
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SLT Bounds (cont’d)

• SLT shows that

Ptrain

(
sup
f∈M

∣∣∣costmP (x,y)[w,M]− costmtrain[w,M]
∣∣∣ > ε

)
≤ bound

• Model selection is performed on costmtrain(f(ŵ|train)) + bound

• Different bounds have been proven and they depend on the so-called VC-dimension of

the model class. The VC-dimension can be infinite. For linear classifiers dimV C =

M , which means that the VC-dimension is simply the number of parameters. For

systems with a finite VC dimension, the bound decreases with N when N > dimV C .

• The main difference to a traditional frequentist approach is that here we make a state-

ment about the worst case (supremum) whereas the frequentist approach is concerned

with the average case
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SLT Discussion

• The only assumption is that P (x, y) is fixed, but it can be arbitrarily complex. In

particular, the optimal function does not need to be in the classM of functions under

consideration

• The bounds are often very conservative and the observed generalization costs are often

much smaller than the obserbed ones
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Conclusion

• Machine learning focusses on generalization costs and traditionally not as much on

parameter estimation (exceptions: Bioinformatics, Biomedicine)

• Empirical model selection is most often used. In each publication, test set performance

needs to be reported

• Frequentist approaches typically estimate Etraincostm
P (x,y)

[ŵ|train,M]. We have

studied CP and the AIC

• Bayesian approaches do model averaging instead of model selection. The BIC criterion

is useful, if model selection needs to be performed

• An advantage of the SLT is that the optimal function does not need to be included

in the class of observed functions

• The derived bounds are typically often rather conservative

• SLT has been developed in the Machine Learning community, whereas frequentist and

Bayesian approaches originated in Statistics
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