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In [18]: import numpy as np
import matplotlib.pyplot as plt
from sklearn import decomposition
from sklearn import datasets
from sklearn import preprocessing

1 Load Iris data

In [19]: iris = datasets.load_iris()
print (iris.DESCR)

Iris Plants Database

Data Set Characteristics:
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
— Iris—Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:

Min Max Mean SD Class Correlation
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)



:Missing Attribute Values: None

:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher

:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

This is a copy of UCI ML iris datasets.
http://archive.ics.uci.edu/ml/datasets/Iris

The famous Iris database, first used by Sir R.A Fisher

This is perhaps the best known database to be found in the

pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
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In [20]: X = iris.data
X.shape

Out[20]: (150, 4)

2 Optionally standardize the data (mean 0, std 1)

Note that PCA is sensitive to the scaling of the inputs!



In the Iris data the inputs have similar ranges so standardizing the scaling is not strictly neces-
sary. We do it anyway here. ..

In [21]: Xs = preprocessing.StandardScaler (copy=True,
with_mean=False,
with_ std=True) .fit_transform(X)

print ('std before: %s' % X.std(axis=0))
print ('std after: %$s' % Xs.std(axis=0))

std before: [ 0.82530129 0.43214658 1.75852918 0.76061262]
std after: [ 1. 1. 1. 1.]

3 Principle Component Analysis

In the following we calculate a PCA with as many components as there are dimensions in the
dataset (4). This allows investigating how much variance is explained by which principal com-
ponents (see right plot). If we are only interested in dimensionality reduction, it is often more
efficient to only calculate the desired number of components, e.g. 2.

In [22]: pca = decomposition.PCA (n_components=4)
pca.fit (Xs)
Z = pca.transform(Xs)
Z .shape

Out[22]: (150, 4)

In [23]: fig,ax = plt.subplots(l,2, figsize=(12, 5))
ax[0] .scatter(2[:, 01, Z[:, 1], c=iris.target, cmap=plt.cm.spectral)
[0] .set_xlabel ('First principal component')
x[0].set_ylabel ('Second principal component')
[0] .grid()

var_explained = pca.explained_variance_ratio_
ax[1l] .bar (np.arange (len(var_explained)),var_explained)

ax[1].set_xticks (np.arange (len (var_explained)))
ax[1l].set_xticklabels (l+np.arange (len(var_explained)))
ax[1].set_xlabel ('principal components')
ax[1l].set_ylabel ('variance explained [%]")

ax[1].plot (np.cumsum(var_explained), "k-")

ax[1].grid()

plt.show ()
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Note that the first two principal components explain almost the complete variance of the four-
dimensional dataset.
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