
PCA_example

June 9, 2017

In [18]: import numpy as np
import matplotlib.pyplot as plt
from sklearn import decomposition
from sklearn import datasets
from sklearn import preprocessing

1 Load Iris data

In [19]: iris = datasets.load_iris()
print(iris.DESCR)

Iris Plants Database
====================

Notes

Data Set Characteristics:

:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:

- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:

- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica

:Summary Statistics:

============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation

============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)

1

============== ==== ==== ======= ===== ====================

:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

This is a copy of UCI ML iris datasets.
http://archive.ics.uci.edu/ml/datasets/Iris

The famous Iris database, first used by Sir R.A Fisher

This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

References

- Fisher,R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).

- Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.

- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.

- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.

- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.

- Many, many more ...

In [20]: X = iris.data
X.shape

Out[20]: (150, 4)

2 Optionally standardize the data (mean 0, std 1)

Note that PCA is sensitive to the scaling of the inputs!

2

In the Iris data the inputs have similar ranges so standardizing the scaling is not strictly neces-
sary. We do it anyway here. . .

In [21]: Xs = preprocessing.StandardScaler(copy=True,
with_mean=False,
with_std=True).fit_transform(X)

print('std before: %s' % X.std(axis=0))
print('std after: %s' % Xs.std(axis=0))

std before: [0.82530129 0.43214658 1.75852918 0.76061262]
std after: [1. 1. 1. 1.]

3 Principle Component Analysis

In the following we calculate a PCA with as many components as there are dimensions in the
dataset (4). This allows investigating how much variance is explained by which principal com-
ponents (see right plot). If we are only interested in dimensionality reduction, it is often more
efficient to only calculate the desired number of components, e.g. 2.

In [22]: pca = decomposition.PCA(n_components=4)
pca.fit(Xs)
Z = pca.transform(Xs)
Z.shape

Out[22]: (150, 4)

In [23]: fig,ax = plt.subplots(1,2, figsize=(12, 5))
ax[0].scatter(Z[:, 0], Z[:, 1], c=iris.target, cmap=plt.cm.spectral)
ax[0].set_xlabel('First principal component')
ax[0].set_ylabel('Second principal component')
ax[0].grid()

var_explained = pca.explained_variance_ratio_
ax[1].bar(np.arange(len(var_explained)),var_explained)
ax[1].set_xticks(np.arange(len(var_explained)))
ax[1].set_xticklabels(1+np.arange(len(var_explained)))
ax[1].set_xlabel('principal components')
ax[1].set_ylabel('variance explained [%]')
ax[1].plot(np.cumsum(var_explained),'k-')
ax[1].grid()
plt.show()

3

Note that the first two principal components explain almost the complete variance of the four-
dimensional dataset.

4

	Load Iris data
	Optionally standardize the data (mean 0, std 1)
	Principle Component Analysis

