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Summary

• Conditional probability

P (y|x) =
P (x, y)

P (x)
with P (x) > 0

• Product rule

P (x, y) = P (x|y)P (y) = P (y|x)P (x)

• Chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)

• Bayes theorem

P (y|x) =
P (x, y)

P (x)
=

P (x|y)P (y)

P (x)
P (x) > 0
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• Marginal distribution

P (x) =
∑
y

P (x, y)

• Independent random variables

P (x, y) = P (x)P (y|x) = P (x)P (y)



Discrete Random Variables

• A random variable X(c) is a variable (more precisely a function), whose value

depends on the result of a random process

• Examples:

– c is a coin toss and X(c) = 1 if the result is head

– c is a person, randomly selected from the University of Munich. X(c) is the height

of that person

• A discrete random variable X can only assume a countable number of states.

Thus X = x with x ∈ {x1, x2, . . .}
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Discrete Random Variables (2)

• A probability distribution specifies with which probability a random variable assumes

a particular state

• A probability distribution of X can be defined via a probability function f(x):

P (X = x) = P ({c : X(c) = x}) = f(x)

• f(x) is the probability function and x is a realisation of X

• One often writes

f(x) = PX(x) = P (x)
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Elementary / Atomic Events

• In statistics, one attempts to derive the probabilities from data (machine learning)

• In probability one assumes either that some probabilities are known, or that they can

be derived from some atomic events

• Atomic event: using some basic assumptions (symmetry, neutrality of nature, fair

coin, ...) one assumes the probabilities for some elementary events
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Example: Toss of a Fair Coin

• Atomic events: c = {h, t}

• The probability of each elementary event is 1/2

• X(c) is a random variable that is equal to one if the result is head and is zero

otherwise

• P (X = 1) = 1/2
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Random Variables

• From now on we will not refer to any atomic event; for complex random variables

like the height or the weight of a person, it would be pretty much impossible to think

about the atomic events that produced height and weight

• We directly look at the random variables and their dependencies

• The running example will be the distribution of height H and weight W of students

in Munich. For simplicity we assume that there are only two states for either variables:

H = t for a tall person and H = s for a small person. Similarly, W = b for a big

person and W = l for a light person
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Multivariate Probability Distributions

• Define two random variables X and Y . A multivariate distribution is defined as:

P (x, y) = P (X = x, Y = y) = P (X = x ∧ Y = y)

• Note that defines the probability of a conjunction!
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Special Cases

• If two random variables are independent, then P (X,Y ) = P (X)P (Y ). This is not

the case in our example since P (t, b) = 0.4 6= P (t)P (b) = 0.5× 0.6 = 0.3

• Two random variables can be mutually exclusively true: P (X = 1, Y = 1) = 0.

Also not the case in our example (we identify b and t with true)

• If M binary random variables X1, . . . , XM are all mutually exclusive and collectively

exhaustive (i.e., exactly one variable assumes the state 1 in a given sample), then the

M binary variables can be represented by one random variable with M states
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Which Random Variables?

• It should be clear from the discussion that the definition of random variables in a

domain is up to the researcher, although there is often a“natural”choice (height of a

person, income of a person, age of a person, ...)
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Conditional Distribution

• I am interested in the probability distribution of the random variable Y but consider

only atomic events, where X = x

• Definition of a conditional probability distribution

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
with P (X = x) > 0

• The distribution is identical to the one for the unconditional case, only that I have to

divide by P (X = x) (re-normalize)
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Product Rule and Chain Rule

• It follows: product rule

P (x, y) = P (x|y)P (y) = P (y|x)P (x)

• and chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)
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Bayes Theorem

• Bayes Theorem

P (y|x) =
P (x, y)

P (x)
=

P (x|y)P (y)

P (x)
P (x) > 0
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Marginal Distribution

• The marginal distribution can be calculated from a joint distribution as:

P (X = x) =
∑
y

P (X = x, Y = y)
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General (Logical) Expression (Query)

• Example: Φ = X ∨ (Y ∧ Z). What is P (Φ = true)?

• We can write the joint as: P (Φ, X, Y, Z) = P (Φ|X,Y, Z)P (X,Y, Z)

• The marginal distribution can be calculated from a joint distribution as:

P (Φ = true) =
∑
x,y,z

P (Φ = true|x, y, z)P (x, y, z)

∑
x,y,z:Φ=true

P (x, y, z)
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Special Case: Disjunction

• We get for the disjunction

P (X = 1 ∨ Y = 1) =

P (X = 1, Y = 0) + P (X = 0, Y = 1) + P (X = 1, Y = 1) =

[P (X = 1, Y = 0) + P (X = 1, Y = 1)] + [P (X = 0, Y = 1) + P (X = 1, Y = 1)]

−P (X = 1, Y = 1)

= P (X = 1) + P (Y = 1)− P (X = 1, Y = 1)

• Only if states are mutually exclusive, P (X = 1, Y = 1) = 0; then

P (X = 1 ∨ Y = 1) = P (X = 1) + P (Y = 1)

16





Marginalization and Conditioning: Basis for Probabilistic
Inference

• P (I, F, S) where I = 1 stands for influenza, F = 1 stands for fever, S = 1

stands for sneezing

• What is the probability for influenza, when the patient is sneezing, but temperature is

unknown, P (I|S)?

• Thus I need (conditioning) P (I = 1|S = 1) = P (I = 1, S = 1)/P (S = 1)

• I calculate via marginalization

P (I = 1, S = 1) =
∑
f

P (I = 1, F = f, S = 1)

P (S = 1) =
∑
i

P (I = i, S = 1)
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Independent Random Variables

• Independence: two random variables are independent, if,

P (x, y) = P (x)P (y|x) = P (x)P (y)

• It follows for independent random variables,

P (X = x ∨ Y = y) = P (X = x) + P (Y = y)− P (X = x)P (Y = y)
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Expected Values

• Expected value

E(X) = EP (x)(X) =
∑
i

xiP (X = xi)
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Variance

• The Variance of a random variable is:

var(X) =
∑
i

(xi − E(X))2P (X = xi)

• The Standard Deviation is its square root:

stdev(X) =
√

V ar(x)
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Covariance

• Covariance:

cov(X,Y ) =
∑
i

∑
j

(xi − E(X))(yj − E(Y ))P (X = xi, Y = yj)

• Covariance matrix:

Σ[XY ],[XY ] =

(
var(X) cov(X,Y )

cov(Y,X) var(Y )

)
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Correlation

• Useful identity:

cov(X,Y ) = E(XY )− E(X)E(Y )

where E(XY ) is the correlation.

Correlation coefficient (confusing naming!) is

r =
cov(X,Y )√

var(X)
√

var(Y )
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More Useful Rules

• We have, independent of the correlation between X and Y ,

E(X + Y ) = E(X) + E(Y )

and thus also

E(X2 + Y 2) = E(X2) + E(Y 2)

• For the covariances of the sum of random variables,

var(X+Y ) = E(X+Y−(E(X)+E(Y ))) = E((X−E(X))+(Y−E(Y )))2

= E((X −E(X))2) +E((Y −E(Y ))2)−2E(X +E(X))(Y −E(Y ))

= var(X) + var(Y )− 2cov(X,Y )

• If w is a random vector with covariance matrix cov(w) and y = Aw where A is a

fixed matrix. Then

cov(y) = Acov(w)AT
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Continuous Random Variables

• Probability density

f(x) = lim
∆x→0

P (x ≤ X ≤ x + ∆x)

∆x

• Thus

P (a < x < b) =

∫ b

a
f(x)dx

• The distribution function is

F (x) =

∫ x

−∞
f(x)dx = P (X ≤ x)
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Expectations for Continuous Variables

• Expected value

E(X) = EP (x)(X) =

∫
xP (x)dx

• Variance

var(X) =

∫
(x− E(x))2P (x)dx

• Covariance:

cov(X,Y ) =

∫ ∫
(x− E(X))(y − E(Y ))P (x, y)dxdy
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