
2016/06/01

Deep Learning
Presenter: Dr. Denis Krompaß
Siemens Corporate Technology – Machine Intelligence Group
Denis.Krompass@siemens.com

Slides: Dr. Denis Krompaß and Dr. Sigurd Spieckermann

2016/06/01

Deep Learning vs. Classic Data Modeling

INPUT

HAND-DESIGNED
PROGRAM

OUTPUT

INPUT

HAND-DESIGNED
FEATURES

MAPPING FROM
FEATURES

OUTPUT

INPUT

FEATURES

MAPPING FROM
FEATURES

OUTPUT

INPUT

FEATURES

ADDITIONAL LAYERS OF
MORE ABSTRACT

FEATURES

MAPPING FROM
FEATURES

OUTPUT

RULE-BASED
SYSTEMS

CLASSIC MACHINE
LEARNING REPRESENTATION LEARNING

DEEP LEARNING

SOURCE: http://www.deeplearningbook.org/contents/intro.html

LEARNED FROM DATA

2016/06/01

Deep Learning
Hierarchical Feature Extraction

SOURCE: http://www.eidolonspeak.com/Artificial_Intelligence/SOA_P3_Fig4.png

This illustration only shows the
idea!

In reality the learned features
are abstract and hard to

interpret most of the time.

2016/06/01

Deep Learning
Hierarchical Feature Extraction

SOURCE:
Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face
verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1701-1708).

(Classic) Neural Networks are an important
building block of Deep Learning but there is more

to it.

NEURAL NETWORKS HAVE BEEN AROUND FOR DECADES!

2016/06/01

What’s new?

OPTIMIZATION & LEARNING

OPTIMIZATION ALGORITHMS
• Adaptive Learning Rates (e.g.

ADAM)
• Evolution Strategies
• Synthetic Gradients
• Asynchronous Training
• …
REPARAMETERIZATION
• Batch Normalization
• Weight Normalization
• …
REGULARIZATION
• Dropout
• DropConnect
• DropPath
• …

MODEL ARCHITECTURES

BUILDING BLOCKS
• Spatial/temporal pooling
• Attention mechanism
• Variational Layers
• Dilated convolution
• Variable-length sequence modeling
• Macro modules (e.g. Residual Units)
• Factorized layers
• …
ARCHITECTURES
• Neural computers and memories
• General purpose image feature

extractors (VGG, GoogleLeNet)
• End-to-end models
• Generative Adversarial Networks
• …

SOFTWARE

• Theano
• Keras
• Blocks

• TensorFlow
• Keras
• Sonnet
• TensorflowFold

• Torch7
• Caffe
• …
GENERAL
• GPUs
• Hardware accessibility (Cloud)
• Distributed Learning
• Data

* deprecated

2016/06/01

Enabler: Tools

It has never been that easy to build deep learning models!

2016/06/01

Enabler: Data

Deep Learning requires tons of labeled data if the
problem is really complex.

Labeled examples Example problems solved in the
world.

1 – 10 Not worth a try.

10 – 100 Toy datasets.

100 – 1,000 Toy datasets.

1,000 – 10,000 Hand-written digit recognition.

10,000 – 100,000 Text generation.

100,000 – 1,000,000 Question answering, chat bots.

> 1,000,000 Multi language text translation.
Object recognition in images/videos.

2016/06/01

Enabler: Computing Power for Everyone

GPUs

kmmn RWRXWXh ´´ ÎÎ×= ,,

Matrix Products are highly parallelizable Distributed training enables us to train very
large deep learning models on tons of data

2016/06/01

Deep Learning Research

Companies People

Jürgen

Schmidhuber

Geoffrey Hinton

Yann LeCun

Andrew NgYoshua Bengio

2016/06/01

Lecture Overview

• Part I – Deep Learning Model Architecture Design

• Part II – Training Deep Learning Models

• Part III – Deep Learning and Artificial (General) Intelligence

Deep Learning
Part I

Deep Learning Model Architecture Design

2016/06/01

Part I – Deep Learning Model Architecture

Basic Building Blocks
• The fully connected layer – Using brute force.
• Convolutional neural network layers – Exploiting neighborhood relations.
• Recurrent neural network layers – Exploiting sequential relations.

Thinking in Macro Structures
• Mixing things up – Generating purpose modules.
• LSTMs and Gating – Simple memory management.
• Attention – Dynamic context driven information selection.
• Inception - Dynamic receptive field expansion.
• Residual Units – Building ultra deep structures.

End-to-End model design
• Example for design choices.
• Real examples.

Deep Learning
Basic Building Blocks

2016/06/01

Neural Network Basics
Linear Regression

INPUTS OUTPUT

1

2016/06/01

Neural Network Basics
Logistic Regression

INPUTS OUTPUT

1

2016/06/01

Neural Network Basics
Multi-Layer Perceptron

INPUTS OUTPUTHIDDEN

1

...
)(relu
)tanh(

)(

ˆ
)(

)2()1()2(

)1()1()1(

z
z

z

bhWy
bxWh

=

+=

+=

f

f

With activation function:

1

Output Layer

Hidden Layer

2016/06/01

Neural Network Basics
Activation Functions

INPUTS OUTPUTHIDDEN

1
1

Activation
Function

Task

identity(h) Regression
logistic(h) Binary

Classification
softmax(h) Multi-Class

Classification

Nice overview on activation functions:

https://en.wikipedia.org/wiki/Activation_function

Activation
Function
identity(h)
tanh(h)

relu(h)

…

2016/06/01

Basic Building Blocks
The Fully Connected Layer

INPUTS HIDDEN

1 kkmmn

kkmm

RbRWRX
bXWH

RbRWRx
bxWh

´´´

´´´

ÎÎÎ

+=

ÎÎÎ

+=

1)1()1(

)1()1()1(

1)1()1(1

)1()1()1(

,,
)(

,,
)(

f

f

Passing one example:

Passing n examples:

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

343

175
231

K

MMMM

K

K

()231 K

2016/06/01

Basic Building Blocks
The Fully Connected Layer – Stacking

INPUTS HIDDEN

1
1

1

HIDDEN

)(
...

)(
)(

)()1()()(

)2()1()2()2(

)1()1()1(

llll bhWh

bhWh
bxWh

+=

+=

+=

-f

f

f

. . .

43)1(´Î RW 34)2(´Î RW

2016/06/01

Basic Building Blocks
The Fully Connected Layer – Using Brute Force

INPUTS HIDDEN

1

Brute force layer:
• Exploits no assumptions about the inputs.
ØNo weight sharing.

•Simply combines all inputs with each other.
ØExpensive! Often responsible for the largest amount of
parameters in a deep learning model.

•Use with care since it can quickly over-parameterize the model
ØCan lead to degenerated solutions.

Examples:

Two consecutive fully connected layer with 1000 hidden neurons
each: 1,000,000 free parameters!

3,000,000 free parameters
for a fully connected layer
with 100 hidden units!

RGB image of shape
100 x 100 x 3

2016/06/01

Basic Building Blocks
Convolutional Layer - Convolution of Filters

width

he
ig

ht

INPUT IMAGE

width

he
ig

ht

FILTER FEATURE MAP

width

he
ig

ht

2016/06/01

Basic Building Blocks
(Valid) Convolution of Filter

width

he
ig

ht

INPUT IMAGE

width

he
ig

ht

FILTER FEATURE MAP

width

he
ig

ht

bxwh zjui
ji

jizu +×= ++å ,
,

,,

2016/06/01

Basic Building Blocks
(Valid) Convolution of Filter

width

he
ig

ht

INPUT IMAGE

width

he
ig

ht

FILTER FEATURE MAP

width

he
ig

ht

bxwh zjui
ji

jizu +×= ++å ,
,

,,

2016/06/01

Basic Building Blocks
(Valid) Convolution of Filter

width

he
ig

ht

INPUT IMAGE

width

he
ig

ht

FILTER FEATURE MAP

width

he
ig

ht

bxwh zjui
ji

jizu +×= ++å ,
,

,,

2016/06/01

Basic Building Blocks
(Valid) Convolution of Filter

width

he
ig

ht

INPUT IMAGE

width

he
ig

ht

FILTER FEATURE MAP

width

he
ig

ht

bxwh zjui
ji

jizu +×= ++å ,
,

,,

2016/06/01

Basic Building Blocks
(Valid) Convolution of Filter

width

he
ig

ht

INPUT IMAGE

width

he
ig

ht

FILTER

FEATURE MAP

width

he
ig

ht

bxwh zjui
ji

jizu +×= ++å ,
,

,,

2016/06/01

Basic Building Blocks
(Valid) Convolution of Filter

width

he
ig

ht

INPUT IMAGE

width

he
ig

ht

FILTER

FEATURE MAP

width

he
ig

ht

bxwh zjui
ji

jizu +×= ++å ,
,

,,

2016/06/01

Basic Building Blocks
Convolutional Layer – Single Filter

width

he
ig

ht

INPUT IMAGE

width

he
ig

ht

FILTER FEATURE MAP

width

he
ig

ht

1331 ´´´
Layer weights:

2016/06/01

Basic Building Blocks
Convolutional Layer – Multiple Filters

width

he
ig

ht

INPUT IMAGE

width

he
ig

ht

k-FILTERS k-FEATURE MAPS

width

he
ig

ht

4331 ´´´
Layer weights:

2016/06/01

Basic Building Blocks
Convolutional Layer – Multi-Channel Input

width

he
ig

ht

k-Channel INPUT IMAGE

width

he
ig

ht

FILTER FEATURE MAP

width

he
ig

ht

1333 ´´´
Layer weights:

2016/06/01

Basic Building Blocks
Convolutional Layer – Multi-Channel Input

width

he
ig

ht

k-Channel INPUT IMAGE

width

he
ig

ht

k-FILTERS k-FEATURE MAPS

width

he
ig

ht

4333 ´´´
Layer weights:

2016/06/01

Basic Building Blocks
Convolutional Layer - Stacking

width

he
ig

ht

t-FILTERSk-FEATURE MAPS

width

he
ig

ht

width

he
ig

ht

t-FEATURE MAPS

tk ´´´ 33
Layer weights:

2016/06/01

Basic Building Blocks
Convolutional Layer – Receptive Field Expansion

T A A A T C T G G T C

Convolutional Filter (1 x 3)

Single Node = Output of filter that moves over patches

Single Patch

Feature Map after applying a 1 x 3 filter

0 T A A A T C T G G T C 0

2016/06/01

0 T A A A T C T G G T C 0

0 0

Zero Padding

Convolutional Layer – Receptive Field Expansion.

00

Expansion of the receptive field for a 1 x 3 filter: 2i +1

2016/06/01

0 T A A A T C T G G T C 0

0 0

Zero Padding

Convolutional Layer – Receptive Field Expansion.

00

Expansion of the receptive field for a 1 x 3 filter: 2i +1

2016/06/01

0 T A A A T C T G G T C 0

0 0

Zero Padding

Convolutional Layer – Receptive Field Expansion.

00

Expansion of the receptive field for a 1 x 3 filter: 2i +1

2016/06/01

0 T A A A T C T G G T C 0
Zero Padding

Convolutional Layer – Receptive Field Expansion with Pooling Layer.

00Pooling

Layer
(width 2, stride 2)

2016/06/01

0 T A A A T C T G G T C 0
Zero Padding

Convolutional Layer – Receptive Field Expansion with Pooling Layer.

00Pooling

Layer

2016/06/01

0 T A A A T C T G G T C 0
Zero Padding

Convolutional Layer - Receptive Field Expansion with Pooling Layer.

00Pooling

Layer

2016/06/01

0 T A A A T C T G G T C 0

0 0 0 0

0 00 0

Zero Padding

Convolutional Layer – Receptive Field Expansion with Dilation

Expansion of the receptive field for a 1 x 3 filter: 2i+1 - 1

Paper https://arxiv.org/pdf/1511.07122.pdf

2016/06/01

0 T A A A T C T G G T C 0

0 0 0 0

0 00 0

Zero Padding

Convolutional Layer - Receptive Field Expansion with Dilation

Expansion of the receptive field for a 1 x 3 filter: 2i+1 - 1

2016/06/01

0 T A A A T C T G G T C 0

0 0 0 0

0 00 0

Zero Padding

Convolutional Layer - Receptive Field Expansion with Dilation

Expansion of the receptive field for a 1 x 3 filter: 2i+1 - 1

2016/06/01

Basic Building Blocks
Convolutional Layer – Exploiting Neighborhood Relations

INPUTS FEATURE
MAP

Convolutional layer:
• Exploits neighborhood relations of the inputs (e.g. spatial).
• Applies small fully connected layers to small patches of the input.
ØVery efficient!
ØWeight sharing
ØNumber of free parameters

•The receptive field can be increased by stacking multiple layers
•Should only be used if there is a notion of neighborhood in the input:

•Text, images, sensor time-series, videos, …

Example:
2,700 free parameters for a
convolutional layer with 100
hidden units (filters) with a
filter size of 3 x 3!RGB image of shape

100 x 100 x 3

filters#thfilter widheightfilterchannelsinput# ´´´

1

2016/06/01

Basic Building Blocks
Recurrent Neural Network Layer – The RNN cell

+
RNN CELL

INPUT t

ϕFC

FC

ST
AT

E
h t

STATE ht

FC = Fully connected layer
+ = Addition
Φ = Activation function

INPUTS HIDDEN

1

State HIDDEN

)(1 bWxUhh ttt ++= -f

2016/06/01

Basic Building Blocks
Recurrent Neural Network layer – Unfolded

+0
RNN CELL

INPUT 0

ϕFC

FC

+
RNN CELL

INPUT 1

ϕFC

FC

ST
AT

E
0

STATE
0 +

RNN CELL

INPUT T

ϕFC

FC

…

…

STATE
1

STATE
T -1

FC = Fully connected layer
+ = Addition
Φ = Activation function

ST
AT

E
1

ST
AT

E
T

SEQUENTIAL INPUT

SEQUENTIAL OUTPUT

2016/06/01

Basic Building Blocks
Vanilla Recurrent Neural Network (unfolded)

+0
RNN CELL

INPUT 0

ϕFC

FC

FC

OUTPUT 0

+
RNN CELL

INPUT 1

ϕFC

FC

FC

OUTPUT 1

ST
AT

E
0

STATE
0 +

RNN CELL

INPUT T

ϕFC

FC

FC

OUTPUT T

…

…

STATE
1

STATE
T -1

SEQUENTIAL INPUT

SEQUENTIAL OUTPUTFC = Fully connected layer
+ = Addition
Φ = Activation function

ST
AT

E
1

ST
AT

E
T

)(bVhy tt += f
Output layer:

2016/06/01

Basic Building Blocks
Recurrent Neural Network Layer – Stacking

+0
RNN CELL

INPUT 0

ϕFC

FC

+
RNN CELL

INPUT 1

ϕFC

FC

STATE
0,0

STATE
0,0 +

RNN CELL

INPUT T

ϕFC

FC

…

…

STATE
0,1

STATE
0,T -1

STATE
0,1

STATE
0,T

+0
RNN CELL

ϕFC

FC

+
RNN CELL

ϕFC

FC
ST

AT
E

1,
0

STATE
1,0 +

RNN CELL

ϕFC

FC

…STATE
1,1

STATE
1,T -1

ST
AT

E
1,

1

ST
AT

E
1,

T

2016/06/01

Basic Building Blocks
Recurrent Neural Network Layer – Exploiting Sequential Relations

RNN layer:
• Exploits sequential dependencies (Next prediction might depend on
things that were observed earlier).
•Applies the same (via parameter sharing) fully connected layer to
each step in the input data and combines it with collected information
from the past (hidden state).
ØDirectly learns sequential (e.g. temporal) dependencies.

•Stacking can help to learn deeper hierarchical state representations.
•Should only be used if sequential sweeping of the data makes
sense: Text, sensor time-series, (videos, images)…

•Vanilla RNN is not able to capture long-time dependencies!
•Use with care since it can also quickly over-parameterize the model

ØCan lead to degenerated solutions.

100 x100100 x100100 x100100 x100100 x100

e.g. Videos of frames of
shape100 x 100 x 3

+
RNN CELL

INPUT t

ϕFC

FC

ST
AT

E
h t

STATE ht

Deep Learning
Thinking in Macro Structures

2016/06/01

Thinking in Macro Structures
Remember the Important Things – And Move On

In case no assumptions on the input
data can be exploited. (Treat all
inputs as independent)

FC +

Good for exploiting spatial/sequential
dependencies in the data.CNN +

Good for modeling sequential data
with no long term dependenciesRNN +

Fully Connected Layer

Convolutional Layer

Recurrent Neural Network Layer

With these three basic building blocks, we are already able to do amazing stuff!

Important things:
•Purpose
•Weaknesses
•General usage
•Tweaks

2016/06/01

Thinking in Macro Structures
Mixing Things Up – Generating Purpose Modules.

• Given the basic building blocks introduced in the last section:

• We can construct modules that address certain sub-task within the model that might be
beneficial for reaching the actual target goal.
• E.g. Gating, Attention, Hierarchical feature extraction, …

• These modules can further be combined to form even larger modules serving a more complex
purpose
• LSTMs, Residual Units, Fractal Nets, Neural memory management …

• Finally all things are further mixed up to form an architecture with many internal mechanisms
that enables the model to learn very complex tasks end-to-end.
• Text translation, Caption generation, Neural Computer…

2016/06/01

Thinking in Macro Structures
Controlling the Information Flow – Gating

Image: https://au.pinterest.com/explore/tap-valve/ TARGET INPUT

+ σFCCONTEXT

PASSED INPUT

GATE

σ= sigmoid function

Note:
Gate and input have
equal shapes

2016/06/01

Thinking in Macro Structures
Controlling the Information Flow – Gating in Recurrent Neural Network Cells

+ σFCSTATE ht-1

GATE

σ= sigmoid function

Note:
Gate and input have
equal shapes

FC

INPUT t

RNN
CELL

+ STATE ht

Goal: Control how much information from the current input impacts the hidden state representation.
Note: This made up example cell shows only the principle but would not work in practice since we would also need to control the information flow from the

previous state representation to the next (forget gate).

CELL with Input Gate

)(

)(

1

1

RNNtRNNtRNNtt

ititit

bhUxWih

bhUxWi

++×=

++=

-

-

f

s
Input gate:

New state representation

2016/06/01

Thinking in Macro Structures
Remember the Important Things – And Move On.

Gate
Good for controlling
information flow in
a network

+

2016/06/01

ttt

ototot

ctctctttt

itittt

ftfttt

coh
bhUxWo

bhUxWicfc
bhUxWi

bhUxWf

×=
++=

++×+×=
++=

++=

-

--

-

-

)(
)(

)(

)(

1

11

1

1

s
f

s

s

Thinking in Macro Structures
Learning Long-Term Dependencies – The LSTM Cell

Forget gate

Input gate

Output gate

2016/06/01

CELL STATE ct

Thinking in Macro Structures
Learning Long-Term Dependencies – The LSTM Cell

LSTM CELL

GATE

INPUT t

GATE

RNN
CELL

+

GATE

ST
AT

E
h tSTATE ht

ttt

ototot

ctctctttt

itittt

ftfttt

coh
bhUxWo

bhUxWicfc
bhUxWi

bhUxWf

×=
++=

++×+×=
++=

++=

-

--

-

-

)(
)(

)(

)(

1

11

1

1

s
f

s

sForget gate

Input gate

Output gate

2016/06/01

Thinking in Macro Structures
Learning Long-Term Dependencies – The LSTM Cell

STATE
h

t-1

…

…

LSTM CELL

GATE

INPUT t-1

GATE

RNN
CELL

+

GATE
ST

AT
E

h t
-1

CELL STATE ct-1 LSTM CELL

GATE

INPUT t

GATE

RNN
CELL

+

GATE

ST
AT

E
h t

CELL STATE ct-2

STATE ht-2

2016/06/01

Thinking in Macro Structures
Remember the Important Things – And Move On.

LSTM
Good for modeling
long term dependencies
in sequential data

+

PS: Same accounts for Gated Recurrent Units
Very good blog: http://colah.github.io/posts/2015-08-
Understanding-LSTMs/

2016/06/01

Thinking in Macro Structures
Learning to Focus on the Important Things – Attention

Im
age:http://w

w
w

.new
sw

orks.org.uk/Topics-them
es/87726

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell0

INPUT 0 INPUT 1 INPUT 2 INPUT 3 INPUT 4

2016/06/01

Thinking in Macro Structures
Learning to Focus on the Important Things – Attention

CONTEXT 1

ATTENTION

What ever = any function
that maps some input to a
scalar. Often a multi layer
neural network that is
learned with the rest.

INPUT 1

What
ever

α1

CONTEXT 2

INPUT 2

What
ever

α2

CONTEXT k

INPUT k

What
ever

αn

+

…

…

å =
i

i 1a
weighted sum of inputs

2016/06/01

LSTM
Cell

LSTM
Cell

Thinking in Macro Structures
Learning to Focus on the Important Things – Attention

ATTENTION

Attention
NN

α1

Attention
NN

α2

Attention
NN

αn

+

…

…

å =
i

i 1a

LSTM
Cell0

Goal: Filter out unimportant words for the target task.

A Cat Mat

ST
AT

E
h 1

ST
AT

E
h t

ST
AT

E
h 0

weighted sum of inputs

Expectation:
Learns to measure the difference
between the previous and current
state representation:
Low difference = nothing new or
important => low weight α

2016/06/01

Thinking in Macro Structures
Remember the Important Things – And Move On.

Attention
Good for learning
a context sensitive
selection process

+

Interactive explanation: http://distill.pub/2016/augmented-rnns/

2016/06/01

Thinking in Macro Structures
Dynamic Receptive Fields – The Inception Architecture

CONV
1 x 1

CONV
3 x 3

CONV
5 x 5

CONV
1 x 1

CONV
1 x 1

CONV
1 x 1

Pool
3 x 3

INPUT

Concatenate

•Provides the model with a choice of various
filter sizes.

•Allows the model to combine different filter
sizes.

2016/06/01

Thinking in Macro Structures
Dynamic Receptive Fields – The Inception Architecture

INPUT

•Allows model to explicitly learn its “own”
receptive field expansion.

•Allows the model to more explicitly learn different
levels of receptive field expansion at the same
time:
ØMight result in a more diverse set of

hierarchical features available in each layer
INCEPTION

INCEPTION

INCEPTION

2016/06/01

Thinking in Macro Structures
Remember the Important Things – And Move On.

Inception
Good for learning
complex and dynamic
receptive field expansion

+

Paper https://arxiv.org/abs/1409.4842

2016/06/01

Thinking in Macro Structures
Remember the Important Things – And Move On.

Residual
Units

Good for learning
very deep networks+

Paper: https://arxiv.org/pdf/1603.05027.pdf

Deep Learning
End-to-End Model Design

2016/06/01

End-to-End Model Design
Design Choices - Video Classification Example

0 LSTM
Cell

Frame 0

CNN

LSTM
Cell

Frame 1

CNN

LSTM
Cell

Frame 2

CNN

Frame T

Attention
NN

Attention
NN

Attention
NN

LSTM
Cell

CNN

Attention
NN

+

FC

…

…

…

… Hierarchical feature extraction
and input compression

Capturing temporal dependencies

Remove unimportant frames

Classification[Example for design choices]

2016/06/01

End-to-End Model Design
Real Examples - Deep Face

Image:

Hachim El Khiyari, Harry Wechsler

Face Recognition across Time Lapse Using Convolutional Neural Networks

Journal of Information Security, 2016.

2016/06/01

End-to-End Model Design
Real Example - Multi-Lingual Neural Machine Translation

Yonghui Wu, et. al. Google's Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation. https://arxiv.org/abs/1609.08144. 2016

2016/06/01

End-to-End Model Design
Real Examples – Wave Net

Van den Oord et al. Wave Net: A Generative Model for Raw Audio.

https://arxiv.org/pdf/1609.03499.pdf

Deep Learning
Part II

Deep Learning Model Training

2016/06/01

Part II – Training Deep Learning Models

Loss Function Design
•Basic Loss functions
•Multi-Task Learning

Optimization
• Optimization in Deep Learning
• Work-horse Stochastic Gradient Descent
• Adaptive Learning Rates

Regularization
• Weight Decay
• Early Stopping
• Dropout
• Batch Normalization

Distributed Training
• Not covered, but I included a link to a good overview.

Deep Learning
Loss Function Design

2016/06/01

Loss Function Design
Regression

Mean Squared Loss

Network output can be anything:
ØUse no activation function in output layer!

Example ID Target Value (yi) Prediction (fθ(xi)) Example Error
1 4.2 4.1 0.01
2 2.4 0.4 4
3 -2.9 -1.4 2.25
… … … …
n 0 1.0 1.0

å -=
n

i
ii

R
loss xfy

n
XYf 2))((1),,(qq

2016/06/01

Loss Function Design
Binary Classification

Binary Cross Entropy (also called Log Loss)

Network output needs to be between 0 and 1:
ØUse sigmoid activation function in the output layer!
ØNote: Sometimes there are optimized functions available that operate on the raw outputs (logits)

[]å -×-+×-=
n

i
iiii

BC
loss xfyxfy

n
XYf))(1(log)1())(log(1),,(qqq

Example ID Target Value (yi) Prediction (fθ(xi)) Example Error
1 0 0.211 0.237
2 1 0.981 0.019
3 0 0.723 1.284
… … … …
n 0 0.134 0.144

2016/06/01

Cross Entropy (Essentially the same as Perplexity in NLP)

Network output needs to represent a probability distribution over c classes:
ØUse softmax activation function in the output layer!
ØNote: Sometimes there are optimized functions available that operate on the raw outputs (logits)

åå ×-=
n

i

c

j
jiiji

MCC
loss xfy

n
XYf))(log(1),,(,, qq

Loss Function Design
Multi-Class Classification

Example ID Target Value (yi) Prediction (fθ(xi)) Example Error
1 [0, 0, 1] [0.2, 0.2, 0.6] 0.511
2 [1, 0, 0] [0.3, 0.5, 0.2] 1.20
3 [0, 1, 0] [0.1, 0.7, 0.3] 0.511
… … … …
n [0, 0, 1] [0.0, 0.01, 0.99] 0.01

1)(, =å
c

j
jiixfq

2016/06/01

Multi-Label classification loss function (Just sum of Log Loss for each class)

Each network output needs to be between 0 and 1:
ØUse sigmoid activation function on each network output!
ØNote: Sometimes there are optimized functions available that operate on the raw outputs (logits)

))(1log()1())(log(1),,(,,,, jiiji

n

i

c

j
jiiji

MLC
loss xfyxfy

n
XYf qqq -×-+×-= åå

Loss Function Design
Multi-Label Classification

Example ID Target Value (yi) Prediction (fθ(xi)) Example Error
1 [0, 0, 1] [0.2, 0.4, 0.6] 1.245
2 [1, 0, 1] [0.3, 0.9, 0.2] 5.116
3 [0, 1, 0] [0.1, 0.7, 0.1] 0.567
… … … …
n [1, 1, 1] [0.8, 0.9, 0.99] 0.339

2016/06/01

Additive Cost Function

Each network output has associated input and target data and an associated loss metric:
ØUse proper output activation for each of the k output layer!
ØThe weighting λk of each task in the cost function is derived from prior knowledge/assumptions or by trial

and error.
ØNote that we could learn multiple tasks from the same data. This can be represented by copies of the

corresponding data in the formula above. When implementing this, we would of course not copy the data.

Examples:
• Auxiliary heads for counteracting vanishing gradient (Google LeNet, https://arxiv.org/abs/1409.4842)
• Artistic style transfer (Neural Artistic Style Transfer, https://arxiv.org/abs/1508.06576)
• Instance segmentation (Mask R-NN, https://arxiv.org/abs/1703.06870)
• …

Loss Function Design
Multi-Task Learning

[] [] ()qlq ,,),,...,,,...,(00 kk

K

k
losskKK

MT
loss XYfXXYYf

kå=

Deep Learning
Optimization

2016/06/01

Optimization
Learning the Right Parameters in Deep Learning

• Neural networks are composed of differentiable building blocks

• Training a neural network means minimization of some non-convex
differentiable loss function using iterative gradient-based optimization methods

• The simplest but mostly used optimization algorithm is “gradient descent”

2016/06/01

Gradient with respect to the model
parameters θ

),,(with 1

1

-

-

Ñ=

×-=

tlosst

ttt

XYfg

g

q

hqq

q

Optimization
Gradient Descent

We update the parameters a little bit in the
direction where the error gets smaller

Negative Gradient

Positive Gradient

θt

θt

You can think of the
gradient as the local
slope with respect to
each parameter θi at
step t.

2016/06/01

),,(with 1
)()()(

)(
1

-

-

Ñ=

×-=

t
ss

loss
s

t

s
ttt

XYfg

g

q

hqq

q

Gradient with respect to the model
parameters θ

Optimization
Work-Horse Stochastic Gradient Descent

We update the parameters a little bit in the
direction where the error gets smaller

Stochastic Gradient Descent is Gradient
Descent on samples (Mini-Batches) of
data:
• Increases variance in the gradients

ØSupposedly helps to jump out of local minima

• But essentially, it is just super efficient and it
works! In the following we will omit the superscript s

and X will always represent a mini-batch of
samples from the data.

2016/06/01

Optimization
Computing the Gradient

I have to compute the
gradient of that???

Sounds complicated!

Error

),,(with 1

1

-

-

Ñ=

×-=

tlosst

ttt

XYfg

g

q

hqq

q Image:

Hachim El Khiyari, Harry Wechsler

Face Recognition across Time Lapse Using Convolutional Neural Networks

Journal of Information Security, 2016.

2016/06/01

Optimization
Automatic Differentiation

),,(with 1

1

-

-

Ñ=

×-=

tlosst

ttt

XYfg

g

q

hqq

q

2016/06/01

Optimization
Automatic Differentiation

AUTOMATIC DIFFERENTIATION
IS AN

EXTREMELY POWERFUL FEATURE
FOR DEVELOPING MODELS WITH

DIFFERENTIABLE
OPTIMIZATION OBJECTIVES

2016/06/01

Optimization
Wait a Minute, I thought Neural Networks are Optimized via Backpropagation

Backpropagation is just a fancy name for
applying the chain rule to compute the

gradients in neural networks!

2016/06/01

Optimization
Stochastic Gradient Descent – Problems with Constant Learning Rates

Excellent Overview and Explanation: http://sebastianruder.com/optimizing-gradient-descent/

1

2

3

4

Low gradient

Steep gradient

Flat gradient

Gradients of different parameters vary

ttt g×-= hqq

2016/06/01

Optimization
Stochastic Gradient Descent – Problems with Constant Learning Rates

Excellent Overview and Explanation: http://sebastianruder.com/optimizing-gradient-descent/

1

2

3

4

Learning rate too small

Learning rate too large

Get stuck in zero gradient regions

Learning rate can be parameter specific

ttt g×-= hqq

2016/06/01

Optimization
Stochastic Gradient Descent – Adding Momentum

Excellent Overview and Explanation: http://sebastianruder.com/optimizing-gradient-descent/

1

2

3

Step size can accumulates momentum if
successive gradients have same direction

Step size decreases fast if the direction of the
gradients changes

Momentum only decays slowly and does not stop immediately

),,(with 1

1

1

-

-

-

Ñ=
-=
+=

tlosst

ttt

ttt

XYfg
v

gvv

q
qq

hl

q

Decay (“friction”) Constant learning rate

Adding the previous step size can lead to acceleration

√

√

√

2016/06/01

Optimization
Stochastic Gradient Descent – Adaptive Learning Rate (RMS Prop)

Excellent Overview and Explanation: http://sebastianruder.com/optimizing-gradient-descent/

4
For each parameter an individual learning rate is
computed

e

hh

bb

hqq

+
=¢

×--×=

×¢-=

-

ti

i

ittiti

itiitit

gE

ggEgE

g

][

)1(][][

2

2
,1

22

,,,

Update rule with an individual learning rate for each parameter θi

The learning rate is adapted by a decaying mean of past updates

The correction of the (constant) learning rate for each parameter.
The epsilon is only for numerical stability

1

Continuously low gradient will increase the learning
rate

2

Continuously large gradients will result in a decrease
of the learning rate

√

√

√

2016/06/01

Optimization
Stochastic Gradient Descent – Overview Common Step Rules

Excellent Overview and Explanation: http://sebastianruder.com/optimizing-gradient-descent/

1

2

3

4

Constant
Learning
Rate

Constant
Learning
Rate with
Annealing

Momentum AdaDelta RMSProp RMSProp
+

Momentum

ADAMNesterov

√

√

√

√

√

√

√ √

√

√

√

√

√

√

√

√

This does not mean that
it cannot make sense to
use only a constant
learning rate!

√

√

√

√

√

2016/06/01

Optimization
Something feels terribly wrong here, can you see it?

),,(with 1

1

-

-

Ñ=

×-=

tlosst

ttt

XYfg

g

q

hqq

q

Deep Learning
Regularization

2016/06/01

Regularization
Why Regularization is Important

• The goal of learning is not to find a
solution that explain the training data
perfectly.

• The goal of learning is to find a solution
that generalizes well on unseen data
points.

• Regularization tries to prevent the model
to just fit the training data in an arbitrary
way (overfitting).

Training Data
Test Data

2016/06/01

Regularization
Weight Decay – Constraining Parameter Values

Intuition:
•Discourage the model for choosing undesired values for parameters during learning.

General Approach:
•Putting prior assumptions on the weights. Deviations from these assumptions get penalized.

Examples:
L2 –Regularization (Squared L2 norm or Gaussian Prior) L1-Regularization

The regularization term is just added to the cost function for the training.

λ is a tuning parameter that determines how strong the regularization affects learning.

å=
ji

ji
,

2
,

2

2
)(qq

2

2
),,(),,(qlqq ×+= XYfXYf loss

total
loss

å=
ji

ji
,

,1
qq

2016/06/01

Regularization
Early Stopping – Stop Training Just in Time.

Problem
• There might be a point during training where the

model starts to overfit the training data at the cost of
generalization.

Approach
• Separate additional data from the training data and

consistently monitor the error on this validation
dataset.

• Stop the training if the error on this dataset does not
improve or gets worse over a certain amount of
training iterations.

• It is assumed that the validation set approximates
the models generalization error (on the test data).

Stop!

(Unknown) Test Error
Validation Error
Training Error

Training iterations

Highly idealistic view on how early stopping (should) work

2016/06/01

Regularization
Dropout – Make Nodes Expendable

Problem
• Deep learning models are often highly over

parameterized which allows the model to
overfit on or even memorize the training data.

Approach
• Randomly set output neurons to zero
ØTransforms the network into an ensemble

with an exponential set of weaker
learners whose parameters are shared.

Usage
• Primarily used in fully connected layers

because of the large number of parameters
• Rarely used in convolutional layers
• Rarely used in recurrent neural networks (if at

all between the hidden state and output)

1
1

1

INPUTS HIDDEN HIDDEN

. . .

2016/06/01

Regularization
Dropout – Make Nodes Expendable

1
1

1

INPUTS HIDDEN HIDDEN

. . .

0.0

0.0

Problem
• Deep learning models are often highly over

parameterized which allows the model to
overfit on or even memorize the training data.

Approach
• Randomly set output neurons to zero
ØTransforms the network into an ensemble

with an exponential set of weaker
learners whose parameters are shared.

Usage
• Primarily used in fully connected layers

because of the large number of parameters
• Rarely used in convolutional layers
• Rarely used in recurrent neural networks (if at

all between the hidden state and output)

2016/06/01

Regularization
Dropout – Make Nodes Expendable

1
1

1

INPUTS HIDDEN HIDDEN

. . .

0.0

0.0
0.0

0.0

Problem
• Deep learning models are often highly over

parameterized which allows the model to
overfit on or even memorize the training data.

Approach
• Randomly set output neurons to zero
ØTransforms the network into an ensemble

with an exponential set of weaker
learners whose parameters are shared.

Usage
• Primarily used in fully connected layers

because of the large number of parameters
• Rarely used in convolutional layers
• Rarely used in recurrent neural networks (if at

all between the hidden state and output)

2016/06/01

Normalize the input X of layer k by the mini-batch
moments:

The next step gives the model the freedom of
learning to undo the normalization if needed:

The above two steps in one formula.

Note: At inference time, an unbiased estimate of
the mean and standard deviation computed from
all seen mini-batches during training is used.

)(

)(
)()(

)(

)(
)()(

)()()()(

)(

)()(
)(

~

ˆ~

ˆ

k
X

k
Xkk

k
X

k
kk

kkkk

k
X

k
X

k
k

XX

XX

XX

s
mgb

s
g

bg

s
m

×-+×=

+=

-
=

Regularization
Batch Normalization – Avoiding Covariate Shift

Problem
• Deep neural networks suffer from internal

covariate shift which makes training harder.

Approach
• Normalize the inputs of each layer (zero mean,

unit variance)
ØRegularizes because the training network is

no longer producing deterministic values in
each layer for a given training example

Usage
• Can be used with all layers (FC, RNN, Conv)
• With Convolutional layers, the mini-batch

statistics are computed from all patches in the
mini-batch.

Deep Learning
Distributed Training

http://engineering.skymind.io/distributed-deep-learning-
part-1-an-introduction-to-distributed-training-of-neural-
networks

Deep Learning
Part III

Deep Learning and Artificial (General) Intelligence

2016/06/01

Part III – Deep Learning and Artificial (General) Intelligence

Deep Reinforcement Learning
• Brief introduction to the problem setting.
• End-to-End models for control
• Resources

Deep Learning as Building Block for Artificial Intelligence
• Think it over - Not all classifications happen in an blink of an eye.
• Store and retrieve important information dynamically – Managing explicit memories
• Considering long-term consequences - Simulating before acting
• Being a multi talent – Multi-task learning and transfer learning

Deep Learning + Reinforcement Learning
=

Deep Reinforcement Learning

2016/06/01

Deep Reinforcement Learning
The Reinforcement Learning Setting

2016/06/01

Deep Reinforcement Learning
The Reinforcement Learning Setting

Carefully and often manually
designed state representation

2016/06/01

Deep Reinforcement Learning
Model Free Deep Reinforcement Learning

Use deep learning to
automatically extract

meaningful features from the
state representation.

Note: ‚Raw‘ is not meant literally here, you
still have to preprocess the data in a
reasonable way.

State representation consists
of ‘raw’ observations from the

environment.

2016/06/01

Deep Reinforcement Learning
Model Based Deep Reinforcement Learning

Use deep learning to
automatically extract

meaningful features from the
state representation.

Note: ‚Raw‘ is not meant literally here, you
still have to preprocess the data in a
reasonable way.

State representation consists
of ‘raw’ observations from the

environment.
Use Deep Learning to learn a
simulator for the environment

2016/06/01

Deep Reinforcement Learning
Model Based Deep Reinforcement Learning

Use deep learning to perform
planning.

Note: ‚Raw‘ is not meant literally here, you
still have to preprocess the data in a
reasonable way.

State representation consists
of ‘raw’ observations from the

environment.
Use Deep Learning to learn a
simulator for the environment

2016/06/01

Deep Reinforcement Learning
End-to-End Models for Control

See also: Facebook and Intel reign supreme in 'Doom' AI deathmatch.
https://www.engadget.com/2016/09/22/facebook-and-intel-reign-supreme-in-doom-ai-deathmatch/

Moving away from feeding carefully extracted manual (state) features into the models.

2016/06/01

Deep Reinforcement Learning
Resources

https://gym.openai.com/

Deep Learning as Building Block
for

Artificial Intelligence

2016/06/01

Deep Learning as Building Block for AI
Think it over: Not All Decisions Happen in an Blink of An Eye.

Hierarchical feature extraction in the visual cortex.

“For some types of tasks (e.g. for images presented briefly and out of context), it is thought that visual processing
in the brain is hierarchical–one layer feeds into the next, computing progressively more complex features. This is
the inspiration for the “layered” design of modern feed-forward neural networks.” Image (c) Jonas Kubilias

2016/06/01

Deep Learning as Building Block for AI
Non-Stationary Feed-forward Passes in Deep Neural Networks.

in
iti

al
liz

ed
as

1
ve

ct
or

a0

t = 1

o1

a1

t = 2

o2

Sampled from a Gaussian
distribution, which is

learned during training.

Softmax

Multiple passes of an image through a network to reevaluate the final decision

Deep Networks with Internal Selective Attention
through Feedback Connections

Marijn Stolenga, Jonathan Masci, Faustino
Gomez, Juergen Schmidhuber.
https://arxiv.org/abs/1407.3068. 2014

2016/06/01

Deep Learning as Building Block for AI
Non-Stationary Feed-Forward Passes in Deep Neural Networks.

a1

t = 2

o2

Sampled from a Gaussian
distribution, which is

learned during training

Softmax

Final Output (Classification)

at-1

Multiple passes of an image through a network to reevaluate the final decision

2016/06/01

Deep Learning as Building Block for AI
Store and Retrieve Important Information Dynamically – Managing Explicit Memories

Hybrid computing using a neural network with dynamic external memory

Alex Graves et. Al. (Nature 2016)

2016/06/01

Deep Learning as Building Block for AI
Considering Long-Term Consequences – Simulating Before Acting

2016/06/01

Deep Learning as Building Block for AI
Planning in Perfect Information Games

2016/06/01

Deep Learning as Building Block for AI
Dealing with Intractable Many Game States

https://blogs.loc.gov/maps/category/game-theory/

As in many real life settings, the whole
game tree cannot be explored. For this
reason we need automated methods
that help to explore the game tree in a
reasonable way!

=> Deep Learning

http://paulomenin.github.io/go-presentation/images/goban.png

2016/06/01

Deep Learning as Building Block for AI
Being a Multi-Talent – Multi Task Learning and Transfer learning

Progressive Neural Networks

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell

arXiv:1606.04671, 2016

Challenge:
Today, we are able to train systems that sometimes
show super human performance in very complex
tasks. (E.g AlphaGO)

However, the same systems fail miserably when
directly applied to any other (much simpler task).

2016/06/01

Things we did not cover (not complete…)

Encoder-Decoder Networks

Generative adversarial networks

Variational Approaches

Layer Compression (e.g. Tensor-Trains)

Evolutionary Methods for Model Training

Pixel RNN/CNN

Dealing with Variable Length Inputs and Outputs

Maxout NetworksLearning to learn

Transfer Learning

Siamese Networks
Sequence Generation

Sequence Generation

Mask R-CNN

Multi-Lingual Neural Machine Translation

Recursive Neural Networks

Character Level Neural Machine Translation

Neural Artistic Style Transfer

Neural Question Answering

Weight Normalization

Weight Sharing

(Unsupervised) pre-training

Highway Networks

Fractal Networks

Deep Q-Learning
Speech Modeling

Vanishing/Exploding Gradient

Hessian-free optimization

More loss functionsHyper-parameter tuning

Benchmark datasets

Mechanism for training ultra deep networks

Initialization

Pre-Training

Distributed Training

Because it Works

Deep Learning

2016/06/01

Recommended Material

http://cs231n.stanford.edu/
http://cs231n.github.io

2016/06/01

Recommended Material

http://cs224d.stanford.edu/

2016/06/01

Recommended Material

INTRODUCTION
• Tutorial on Neural Networks (Deep Learning and Unsupervised Feature

Learning): http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
• Deep Learning for Computer Vision lecture: http://cs231n.stanford.edu (http://cs231n.github.io)
• Deep Learning for NLP lecture: http://cs224d.stanford.edu (http://cs224d.stanford.edu/syllabus.html)
• Deep Learning for NLP (without magic) tutorial: http://lxmls.it.pt/2014/socher-lxmls.pdf (Videos from NAACL

2013: http://nlp.stanford.edu/courses/NAACL2013)
• Bengio's Deep Learning book: http://www.deeplearningbook.org

2016/06/01

Recommended Material

PARAMETER INITIALIZATION
• Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural

networks." International Conference on Artificial Intelligence and Statistics. 2010.
• He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on

ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1026-1034).

BATCH NORMALIZATION
• Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal

Covariate Shift. In Proceedings of The 32nd International Conference on Machine Learning (pp. 448-456).
• Cooijmans, T., Ballas, N., Laurent, C., & Courville, A. (2016). Recurrent Batch Normalization. arXiv preprint

arXiv:1603.09025.

DROPOUT
• Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint

arXiv:1207.0580 (2012).
• Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine

Learning Research 15.1 (2014): 1929-1958.

2016/06/01

Recommended Material

OPTIMIZATION & TRAINING
• Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic

optimization. The Journal of Machine Learning Research, 12, 2121-2159.
• Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701.
• Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent

magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2.
• Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep

learning. In Proceedings of the 30th International Conference on Machine Learning (ICML) (pp. 1139-1147).
• Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization.arXiv preprint arXiv:1412.6980.
• Martens, J., & Sutskever, I. (2012). Training deep and recurrent networks with hessian-free optimization. In Neural

networks: Tricks of the trade (pp. 479-535). Springer Berlin Heidelberg.

2016/06/01

Recommended Material

COMPUTER VISION
• Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks.

In Advances in Neural Information Processing Systems (pp. 1097-1105).
• Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in

face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1701-1708).
• Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9).
• Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556.
• Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. In Advances in Neural Information

Processing Systems (pp. 2008-2016).
• Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal

networks. In Advances in Neural Information Processing Systems (pp. 91-99).
• Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015). Show, Attend and Tell: Neural

Image Caption Generation with Visual Attention. In Proceedings of The 32nd International Conference on Machine
Learning (pp. 2048-2057).

• Johnson, J., Karpathy, A., & Fei-Fei, L. (2015). DenseCap: Fully Convolutional Localization Networks for Dense
Captioning. arXiv preprint arXiv:1511.07571.

2016/06/01

Recommended Material

NATURAL LANGUAGE PROCESSING
• Bengio, Y., Schwenk, H., Senécal, J. S., Morin, F., & Gauvain, J. L. (2006). Neural probabilistic language models.

In Innovations in Machine Learning (pp. 137-186). Springer Berlin Heidelberg.
• Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing

(almost) from scratch. The Journal of Machine Learning Research, 12, 2493-2537.
• Mikolov, T. (2012). Statistical language models based on neural networks (Doctoral dissertation, PhD thesis, Brno

University of Technology. 2012.)
• Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781.
• Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases

and their compositionality. In Advances in Neural Information Processing Systems (pp. 3111-3119).
• Mikolov, T., Yih, W. T., & Zweig, G. (2013). Linguistic Regularities in Continuous Space Word Representations. In HLT-

NAACL (pp. 746-751).
• Socher, R. (2014). Recursive Deep Learning for Natural Language Processing and Computer Vision (Doctoral

dissertation, Stanford University).
• Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning

phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
• Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv

preprint arXiv:1409.0473.

