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Deep Learning vs. Classic Data Modeling
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Deep Learning
Hierarchical Feature Extraction

Object Recognition )/

Invariant

Representation

Increasingly

This illustration only shows the
idea!
In reality the learned features
are abstract and hard to
interpret most of the time.

Complex

Feawres £
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Deep Learning
Hierarchical Feature Extraction
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(Classic) Neural Networks are an important
building block of Deep Learning but there is more
to It.



What's new?

OPTIMIZATION ALGORITHMS

« Adaptive Learning Rates (e.g.
ADAM)

» Evolution Strategies

» Synthetic Gradients

» Asynchronous Training

REPARAMETERIZATION

« Batch Normalization

» Weight Normalization

REGULARIZATION

» Dropout

e DropConnect

» DropPath

2016/06/01

BUILDING BLOCKS

Spatial/temporal pooling
Attention mechanism
Variational Layers
Dilated convolution

Variable-length sequence modeling
Macro modules (e.g. Residual Units)

Factorized layers

ARCHITECTURES

Neural computers and memories
General purpose image feature
extractors (VGG, GoogleLeNet)
End-to-end models

Generative Adversarial Networks

Theano

* Keras

* Blocks
TensorFlow

* Keras

e Sonnet

* TensorflowFold
Torch7

Caffe

GPUs

Hardware accessibility (Cloud)
Distributed Learning

Data



Enabler: Tools

It has never been that easy to build deep learning models!

*TensorFlow

« C f localhost:6006/#events

TensorBoard EVENTS IMAGES GRAPH  HISTOGRAMS

. : ; ; 2] fil accurac
In [20]: with tf.device("/gpu:0"): # Selecting the device ot Tt X D
# The input to our model, we expect n 10 x 16 RGB images. )
X = tf.placeholder(tf.float32, [None, 10, 10, 3]) [ spiit on underscares accuracy
load [i i
# We apply three convolutinal layer on it. [ Data downioad linke 0.9%0
hl = tf.layers.conv2d(X,filters=16, kernel size=[5, 5], 0850 |
padding='valid', activation=tf.nn.relu) Mortsontal Aka 0750 |
hz = tf.layers.conv2d(hl, filters=32, kernel size=[3, 3], e
padding='valid', activation=tf.nn.relu) STEF RELATIVE WALL o807
0.450
h3 = tf.layers.conv2d(h2,filters=64, kernel size=[3, 3], ex i ; e
padding='valid', activation=tf.nn.relu) Runs nE 000G 4000 <0000 1200k 3.600K
# We flatten the n x 2 x 2 x 64 feature maps to a matrix of shape frain
# n x 256. "
¥4 validation
h4 = tf.reshape(h3, [-1, np.prod(h3.shape.as list()[1:1)]) & Cross entropy
# We apply a fully connected layer. cross enfropy
raw network output = tf.layers.dense(h4, 3, activation=MNone,
use bias=False) 1,40 |
# We apply the softmax activation te transform the output Into 1.00
# a probability distribution over 3 classes. |
network_output = tf.nn.softmax(raw_network output) 0.600 |
0.200 |
# Apply some random input. L
random images = np.random.rand(8, 10, 10, 3) “a 0000 4000 8000 1.200k 1.500k
session = tf.Session{() TOGGLE ALL RUNS

session.run(tf.global variables initializer())
prediction = session.run(network output, feed dict={X: random images})
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Enabler: Data

2016/06/01

Deep Learning requires tons of labeled data if the
problem is really complex.

# Labeled examples Example problems solved in the
world.
1-10 Not worth a try.
10-100 Toy datasets.
100 - 1,000 Toy datasets.
1,000 - 10,000 Hand-written digit recognition.
10,000 - 100,000 Text generation.

100,000 - 1,000,000 Question answering, chat bots.
> 1,000,000 Multi language text translation.

Object recognition in images/videos.



Enabler: Computing Power for Everyone

Matrix Products are highly parallelizable Distributed training enables us to train very
large deep learning models on tons of data

h=XW/|XTR"™"WTR"

amazon lEc 2

Google Cloud P atform

NVIDIA. GPUs
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Deep Learning Research

Companies

B= Microsoft

OpenAl

Google
{) DeepMind
facebook o

) .. 0.
Bai@® Research

2016/06/01



Lecture Overview

Part | — Deep Learning Model Architecture Design

Part Il — Training Deep Learning Models

Part Ill — Deep Learning and Artificial (General) Intelligence
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Part | — Deep Learning Model Architecture

Basic Building Blocks
The fully connected layer — Using brute force.
Convolutional neural network layers — Exploiting neighborhood relations.
Recurrent neural network layers — Exploiting sequential relations.

Thinking in Macro Structures
Mixing things up — Generating purpose modules.
LSTMs and Gating — Simple memory management.
Attention — Dynamic context driven information selection.
Inception - Dynamic receptive field expansion.
Residual Units — Building ultra deep structures.

End-to-End model design

Example for design choices.
Real examples.
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Basic Building Blocks



Neural Network Basics
Linear Regression

INPUTS OUTPUT

tf.placeholder(tf.float32, [None, 2])
tf.vVariable(np.random.rand(2, 1).astype(np.float32))
tf.Variable(np.zeros((1, 1)).astype(np.float32))
utput = tf.matmul(X, W) + b

In [43]:

o n

o T =

=wlax+b

Nug

output

Input
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Neural Network Basics
Logistic Regression

In [3]: | X = tf.placeholder(if.float32, [None, 2])
W = tf.Variable(np.random.rand(2, 1).astype(np.float32))
b = tf.Variable(np.zeros((1, 1)).astype(np.float32))
h = tf.nn.sigmoid(tf.matmul(X, W) + b)
e . . T T
y = logistic(w” x + b)
2
1
]
logistic(z) = B
l+e#* -
=3 ®
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Neural Network Basics
Multi-Layer Perceptron

2016/06/01

output
&

h®) = fw Wy + b(l)) €= Hidden Layer
y =W @hY +p? <€m output Layer

With activation function:
" tanh(z)
relu(z)

fz)= <




Neural Network Basics
Activation Functions

2016/06/01

OUTPUT Activation

Function
identity(h)

tanh(h)
relu(h)

Activation Task
Function
identity(h) Regression

logistic(h) Binary
Classification

softmax(h) Multi-Class
Classification

Nice overview on activation functions:

https://en.wikipedia.org/wiki/Activation_function



Basic Building Blocks
The Fully Connected Layer

1 3 K 2)
Y = f(\N (1)X_|_b(1))
xTRE"WOTR™  bY TR

r 2l 3 K 2§
85 7 K 1-
i SN N
63 4 K 3
H 1) — f(\N (1)X _|_b(1))

° XTRn'm’W(l)TRm'k’b(l)TRl'k
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Basic Building Blocks
The Fully Connected Layer — Stacking

WO TR W& TR"? h® = FW Ox +b®)
’ h® = FW GINONT b(2))

h) = f(\N R3-D 4 b(l))
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Basic Building Blocks

The Fully Connected Layer — Using Brute Force

2016/06/01

Brute force layer:

» Exploits no assumptions about the inputs.
@No weight sharing.

«Simply combines all inputs with each other.
@DExpensive! Often responsible for the largest amount of
parameters in a deep learning model.

*Use with care since it can quickly over-parameterize the model
@Can lead to degenerated solutions.

Examples:
3,000,000 free parameters

100x100 for a fully connected layer
with 100 hidden units!

RGB image of shape
100x 100 x 3

Two consecutive fully connected layer with 1000 hidden neurons
each: 1,000,000 free parameters!



Basic Building Blocks
Convolutional Layer - Convolution of Filters
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Basic Building Blocks
(Valid) Convolution of Filter
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Basic Building Blocks
(Valid) Convolution of Filter

W,Jxx,+uj+z+b
000000 OOO -®
o000 O { T X
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Basic Building Blocks
(Valid) Convolution of Filter

/ WI | XXI+U ) + b

‘
- W
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Basic Building Blocks
(Valid) Convolution of Filter

/ WI | XXI+U ) + b

000000 OOO 2220
- N 4 -
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Basic Building Blocks
(Valid) Convolution of Filter

% hu,z:éwi,jxxi+u,j+z+b ““
o000 L 1 1 S
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Basic Building Blocks
(Valid) Convolution of Filter

o000 h,,=aw,;%.,..*b OOO®
o000 O 009 ss2e
000000 00
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Basic Building Blocks
Convolutional Layer — Single Filter

000000 000

900000 000

900000 000 0000
900000 Layer weights 0000
900000 1737371
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Basic Building Blocks
Convolutional Layer — Multiple Filters

000000 009
L1 DL L] 000
000000 009
X DL LT Layer weights:
00000 1"37°37 4
Q00000
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Basic Building Blocks
Convolutional Layer — Multi-Channel Input

2016/06/01

Layer weights:

3737371




Basic Building Blocks
Convolutional Layer — Multi-Channel Input
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Layer weights:

3737374




Basic Building Blocks
Convolutional Layer - Stacking

Layer weights:

k=373t
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Basic Building Blocks
Convolutional Layer — Receptive Field Expansion

Convolutional Filter (1 x 3)

Single Node = Output of filter that moves over patchesl

TA A AT CTG G T C

77NN TN
Feature Map after applying a 1 x 3 filter

T AAA AT CT G G T C
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Convolutional Layer — Receptive Field Expansion.

O T A A A T CT G G T C O

Zero Padding

Expansion of the receptive field for a 1 x 3 filter: 2i +1
2016/06/01



Convolutional Layer — Receptive Field Expansion.
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Convolutional Layer ceptive Field Expan
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Convolutional Layer — Receptive Field Expansion with Pooling Layer.

Poolin
™0 ! ! 0
Layer 4 4 4

(width 2, stride 2) ~ ©  * P S
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Convolutional Layer — Receptive Field Expansion with Pooling Layer
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Convolutional Layer - Receptive Field Expansion with Pooling Layer.

(L L
Qo

900
\

o T A A AT C T G G T C 0O

Zero Padding




/pdf/1511.07122.pdf

lutional Lay

Convo

- -

- -

s ?
ﬁTr
?
0409
o .ﬁ?fe
‘ .<.T X
Siosie
» ()
0?&?40;

o

o T A A A TOCT G G T C O
Expansion of the receptive field for a 1 x 3 filter: 21*1 -1

< -

Zero Padding



.m ‘ &P?v

lutional Lay

Convo

o o

o o

s ?
4\7&
«T

.o
n:.cwnﬁo
R
K
fows e

-

< -

Zero Padding

o I A A A T C T G G I C 0O
Expansion of the receptive field for a 1 x 3 filter: 21*1 -1



Convolutional Layer - Receptive Field Expansion with Dilatio
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Basic Building Blocks
Convolutional Layer — Exploiting Neighborhood Relations
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Convolutional layer:
» Exploits neighborhood relations of the inputs (e.g. spatial).
» Applies small fully connected layers to small patches of the input.
@Very efficient!
@Weight sharing
@Number of free parameters
#input channels™ filter height~ filter width™ #filters
*The receptive field can be increased by stacking multiple layers
«Should only be used if there is a notion of neighborhood in the input:
*Text, images, sensor time-series, videos, ...

Example:
2,700 free parameters for a
100x100 convolutional layer with 100
hidden units (filters) with a
RGB image of shape filter size of 3 x 3!

100 x 100 x 3



Basic Building Blocks
Recurrent Neural Network Layer — The RNN cell

FC = Fully connected layer
+ = Addition
@ = Activation function

h, = F(UR,_,|+Wx, +b)
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Basic Building Blocks
Recurrent Neural Network layer — Unfolded

FC = Fully connected layer
+ = Addition
® = Activation function

SEQUENTIAL OUTPUT

RNN CELL RNN CELL RNN CELL

INPUT O INPUT 1 e INPUT T

!
SEQUENTIAL INPUT
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Basic Building Blocks
Vanilla Recurrent Neural Network (unfolded)

FC = Fully connected layer SEQUENTIAL OUTPUT

+ = Addition [ A
@ = Activation function OUTPUTO OUTPUT 1 OUTPUT T

Output layer:

Y, = F(Vh, +D)

RNN CELL RNN CELL RNN CELL

INPUT O INPUT 1 e INPUT T

2016/06/01 SEQUENTIAL INPUT



Basic Building Blocks
Recurrent Neural Network Layer — Stacking

- ;o

o
-

!

-
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Basic Building Blocks
Recurrent Neural Network Layer — Exploiting Sequential Relations

2016/06/01

FC

FC

o0

RNN layer:

» Exploits sequential dependencies (Next prediction might depend on
things that were observed eatrlier).

*Applies the same (via parameter sharing) fully connected layer to
each step in the input data and combines it with collected information
from the past (hidden state).

@Directly learns sequential (e.g. temporal) dependencies.
«Stacking can help to learn deeper hierarchical state representations.
«Should only be used if sequential sweeping of the data makes

sense: Text, sensor time-series, (videos, images)...
«Vanilla RNN is not able to capture long-time dependencies!
*Use with care since it can also quickly over-parameterize the model

@Can lead to degenerated solutions.

e.g. Videos of frames of
shapel00 x 100 x 3



Thinking in Macro Structures



Thinking in Macro Structures

Remember the Important Things — And Move On

Fully Connected Layer

Convolutional Layer

Recurrent Neural Network Layer

Important things:
*Purpose
*Weaknesses
*General usage
*Tweaks

FC

CNN

RNN

+

+

+

In case no assumptions on the input
data can be exploited. (Treat all
Inputs as independent)

Good for exploiting spatial/sequential
dependencies in the data.

Good for modeling sequential data
with no long term dependencies

With these three basic building blocks, we are already able to do amazing stuff!

2016/06/01



Thinking in Macro Structures
Mixing Things Up — Generating Purpose Modules.

Introduced In the last section:

We can within the model that might be
beneficial for reaching the actual target goal.

E.g. Gating, Attention, Hierarchical feature extraction, ...

These to form even larger modules serving a more complex
purpose

LSTMs, Residual Units, Fractal Nets, Neural memory management ...

Finally all things are further mixed up to form an architecture with many internal mechanisms
that enables the model to

Text translation, Caption generation, Neural Computer...

2016/06/01



Thinking in Macro Structures
Controlling the Information Flow — Gating

i@

Note:
- FC »——»&»@-—»& Gate and input have
equal shapes

o= sigmoid function

2016/06/01



Thinking in Macro Structures
Controlling the Information Flow — Gating in Recurrent Neural Network Cells

Goal: Control how much information from the current input impacts the hidden state representation.

Note: This made up example cell shows only the principle but would not work in practice since we would also need to control the information flow from the
previous state representation to the next (forget gate).

Input gate:

Note: i :S(- +U. +Dh.
FC a Q 0 Gate and input have t 'ht‘l ' )
equal shapes
New state representation
FC =i, F W X U hicy # D)

o= sigmoid function

RNN
CELL

2016/06/01



Thinking in Macro Structures
Remember the Important Things — And Move On.

Good for controlling
Gate + Information flow In
a hetwork

2016/06/01



Thinking in Macro Structures
Learning Long-Term Dependencies — The LSTM Cell

Forget gate ft = S(\NtXt +U ¢ ht_1 + bf )
nputgate I, =S (W, x, +U.h,_, +b)

C, = fxc, i xFW X, +U h; +D;)
outputgate O =SW. X, +U_ h_, +b,)

h, =0, xc,

2016/06/01



Thinking in Macro Structures
Learning Long-Term Dependencies — The LSTM Cell

Input gate

Ct = 1:t th—l t it xf(\NcXt +Ucht—1 t bc)

CELL
outputgate 0, =S(W_x, +U_h._, +b,) : - GATE

ht :Otxct |

2016/06/01



Thinking in Macro Structures
Learning Long-Term Dependencies — The LSTM Cell

7 7
CELL STATE c,,
LSTM CELL LSTM CELL
] CELL STATE c,, _~" .
5 v
: 2
- M
STATE h,,, * S
" INPUT t-1 INPUT t

2016/06/01



Thinking in Macro Structures
Remember the Important Things — And Move On.

Good for modeling
LSTM + long term dependencies
INn sequential data

PS: Same accounts for Gated Recurrent Units

2016/06/01



Thinking in Macro Structures
Learning to Focus on the Important Things — Attention

-

2016/06/01



Thinking in Macro Structures

Learning to Focus on the Important Things — Attention

2016/06/01

What ever = any function
that maps some input to a
scalar. Often a multi layer
neural network that is
learned with the rest.

What
ever

weighted sum of inputs

1

&
I

What
ever

|

; " B N
L+

@
I

What
ever

o




Thinking in Macro Structures
Learning to Focus on the Important Things — Attention

Goal: Filter out unimportant words for the target task.

éai =1
I ‘é

Attention
NN

I

Attention
NN

°-©
i

]

2016/06/01

weighted sum of inputs

?_.

Attention
NN

o

Expectation:

Learns to measure the difference
between the previous and current
State representation:

Low difference = nothing new or
important => low weight a



Thinking in Macro Structures
Remember the Important Things — And Move On.

Good for learning
Attention + a context sensitive
selection process

2016/06/01



Thinking in Macro Structures
Dynamic Receptive Fields — The Inception Architecture

é Concatenate

*Provides the model with a choice of various I
filter sizes. l
CONV
*Allows the model to combine different filter 1x1
sizes. 1
CONV Pool
1x1 3x3

| |

2016/06/01



Thinking in Macro Structures
Dynamic Receptive Fields — The Inception Architecture

*Allows model to explicitly learn its “own”
receptive field expansion.

levels of receptive field expansion at the same
time:
@Might result in a more diverse set of
hierarchical features available in each layer

*Allows the model to more explicitly learn different -

INCEPTION

2016/06/01



Thinking in Macro Structures
Remember the Important Things — And Move On.

Good for learning
Inception + complex and dynamic
receptive field expansion

2016/06/01



Thinking in Macro Structures
Remember the Important Things — And Move On.

Residual . Good for learning
Units very deep networks

2016/06/01
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End-to-End Model Design
Design Choices - Video Classification Example

[Example for design choices] Classification

— > > > s — Remove unimportant frames

LSIFM LS[FM LSIFM
—

Capturing temporal dependencies

Hierarchical feature extraction
and input compression

Frame O Frame 1 Frame 2 Frame T
2016/06/01



End-to-End Model Design
Real Examples - Deep Face

Image:

Hachim El Khiyari, Harry Wechsler
Face Recognition across Time Lapse Using Convolutional Neural Networks

Journal of Information Security, 2016.

2016/06/01
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End-to-End Model Design
Real Example - Multi-Lingual Neural Machine Translation

2016/06/01
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End-to-End Model Design
Real Examples — Wave Net

Output
Dilation = 8

----

e ** Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input

1x1

_@_

T W i
: Residual |‘|'=I
1
|
: !
) 1x1 :"'
: o @)
I ’ B
: 1!, Skip-connections
M tanh a l: |:
| . e
I Dilated !
L
I Conv ! :I
| Ll
11
Ik Layers 1
lpr—= == Qe M
I'T """"""" I|
| o g g g g
..... kel
..
‘p‘auaal‘
«s1*" Conv
st *
Input
0‘.‘
.0
0‘.‘
0"
0‘.
.0
.0
.0
’0
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1x1

Softmax

—» Output
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Part Il — Training Deep Learning Models

Loss Function Design
Basic Loss functions
Multi-Task Learning

Optimization
Optimization in Deep Learning
Work-horse Stochastic Gradient Descent
Adaptive Learning Rates

Regularization
Weight Decay
Early Stopping
Dropout
Batch Normalization

Distributed Training
Not covered, but | included a link to a good overview.
2016/06/01
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Loss Function Design

Regression

Mean Squared Loss

R l o 2
Ioss(Y1 X,C]) :Ha(y| - fqui))

Network output can be anything:
Use no activation function in output layer!

Example ID Target Value (y;) | Prediction (fy(x;)) | Example Error
1 4.2 4.1 0.01

2 2.4 0.4 4

3 -2.9 -1.4 2.25

n 0 1.0 1.0

2016/06/01




Loss Function Design
Binary Classification

Binary Cross Entropy (also called Log Loss)

. 18 S :
1:Ios(; (Y’ X ’q) = H a_ [yl XIOQ(. 1:67-()(i )') T (1_ yi)xlog(l_ qu.(Xi ))]

Network output needs to be between 0 and 1: «
Use sigmoid activation function in the output layer!
Note: Sometimes there are optimized functions available that operate on the raw outputs (logits)

Example ID Target Value (y;) | Prediction (fy(x;)) | Example Error
1 0 0.211 0.237
2 1 0.981 0.019
3 0 0.723 1.284

n 0 0.134 0.144

2016/06/01



Loss Function Design
Multi-Class Classification

Cross Entropy (Essentially the same as Perplexity in NLP)

frows (Y, X Q== aa y;  *log(f, (X).,)

Network output needs to represent a probablllty distribution over c classes: a f (X ) =1
Use softmax activation function in the output layer! j
Note: Sometimes there are optimized functions available that operate on the raw outputs (logits)

Example ID Target Value (y;) | Prediction (fy(x;)) | Example Error
1 [0, O, 1] [0.2,0.2, 0.6] 0.511

2 [1, O, O] [0.3, 0.5, 0.2] 1.20

3 [0, 1, O] [0.1, 0.7, 0.3] 0.511

N [0, 0, 1] [0.0,0.01,0.99] |0.01
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Loss Function Design
Multi-Label Classification

Multi-Label classification loss function (Just sum of Log Loss for each class)

16 o : : \
LX) =-=aay Hog(f, () )+ @-y; ) rlog - f(x); ;)
i - —

loss N
N

Each network output needs to be between 0 and 1:
Use sigmoid activation function on each network output!
Note: Sometimes there are optimized functions available that operate on the raw outputs (logits)

Example ID Target Value (y;) | Prediction (fy(x;)) | Example Error
1 [0, O, 1] [0.2, 0.4, 0.6] 1.245
2 [1, 0, 1] [0.3,0.9, 0.2] 5.116
3 [0, 1, O] [0.1, 0.7, 0.1] 0.567

N [1, 1, 1] [0.8,0.9,0.99] |0.339

2016/06/01



Loss Function Design
Multi-Task Learning

Additive Cost Function

K
0% ([YO""’YK]’ [Xo’---’ XK]’Q) - é [ 1 (Yk’ Xk1q)
)

Each network output has associated input and target data and an associated loss metric:
Use proper output activation for each of the k output layer!
The weighting A, of each task in the cost function is derived from prior knowledge/assumptions or by trial
and error.
Note that we could learn multiple tasks from the same data. This can be represented by copies of the
corresponding data in the formula above. When implementing this, we would of course not copy the data.

Examples:
Auxiliary heads for counteracting vanishing gradient (Google LeNet, https://arxiv.org/abs/1409.4842)
Artistic style transfer (Neural Artistic Style Transfer, https://arxiv.org/abs/1508.06576)
Instance segmentation (Mask R-NN, https://arxiv.org/abs/1703.06870)

2016/06/01
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Optimization
Learning the Right Parameters in Deep Learning

Neural networks are composed of differentiable building blocks
Training a neural network means minimization of some non-convex

differentiable loss function using iterative gradient-based optimization methods

The simplest but mostly used optimization algorithm is “gradient descent”

2016/06/01



Optimization
Gradient Descent

Negative Gradient

We update the parameters a little bit in the
direction where the error gets smaller

You can think of the : — — X

gradient as the local 4- ................................ qt qt_l h gt

slope with respect to et‘

each parameter 6, at :

step t.

Gradient with respect to the model
parameters 0

with gt — Nq floss (Y1 X 1qt_1)

Positive Gradient

2016/06/01



Optimization
Work-Horse Stochastic Gradient Descent

Stochastic Gradient Descent is Gradient We update the parameters a little bit in the
Descent on samples (Mini-Batches) of direction where the error gets smaller
: — _ (s)
data: q.=4q,_, hx t
 Increases variance in the gradients | |
@Supposedly helps to jump out of local minima Gradient with respect to the model

parameters 6
with g =N, f.,(Y®, X, q,.,)
« But essentially, it is just super efficient and it I q "loss ( ’ Pt-1

works! In the following we will omit the superscript s
and X will always represent a mini-batch of
samples from the data.
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Optimization
Computing the Gradient

| have to compute the
gradient of that???

@)mplicated!
Y

o :qt-l_hxgt |

with gt — Nq f|033 (Y1 X 1qt_1)

2016/06/01

Image:

Hachim El Khiyari, Harry Wechsler
Face Recognition across Time Lapse Using Convolutional Neural Networks

Journal of Information Security, 2016.



Optimization
Automatic Differentiation

In [10]:

—)

In [21]}:

4. =4, _hxgt

with gt — Nq f|035 (Y1 X 1qt_1)

04

2016/06/01

# Define a loss function.

¥ = tf.placeholder(tf.int32, [None]) # The labels.

losses = tf.nn.sparse softmax cross entropy with logits(
labels=Y, logits=raw network output)

loss = tf.reduce mean(losses)

# Computing the gradient.

network parameters = tf.get collection(tf.GraphKeys.TRAINABLE VARIABLES)
grads = tf.gradients(loss, network parameters)

# 56D with mini-batches of size 4 for 180 iterations.

random images = np.random.rand(8, 18, 10, 3).astype(np.float32)
random labels = np.random.randint(@, 3, size=(8,)).astype(np.int32)
for i in xrange(180):

# Sample a mini-batch.

mbatch indices = np.random.choice(np.arange(8), 4)

mbatch images = random images[mbatch indices]

mbatch labels = random labels[mbatch indices]

# Apply SGD update rule with constant learning rate.
for w, g in zip(network parameters, grads):
session.run(tf.assign{w, w - 0.01 * g},
feed dict={X: mbatch images, Y: mbatch labels})

20 40 60 20
Iteration

100



Optimization
Automatic Differentiation

AUTOMATIC DIFFERENTIATION
EXTREMELY POWERFUL FEATURE

DIFFERENTIABLE
OPTIMIZATION OBJECTIVES

'C heano > TensorFlow - . torch




Optimization
Wait a Minute, | thought Neural Networks are Optimized via Backpropagation

Backpropagation is just a fancy name for
applying the chain rule to compute the
gradients in neural networks!
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Optimization
Stochastic Gradient Descent — Problems with Constant Learning Rates

Low gradient Flat gradient

oO—_ 9\_\

q. =g, _hxgt

Steep gradient Gradients of different parameters vary

@\f @%Wg
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Optimization
Stochastic Gradient Descent — Problems with Constant Learning Rates

Learning rate too small Get stuck in zero gradient regions

x@~L %@ )

q. =g, _hxgt

Learning rate too large Learning rate can be parameter specific

x@ N~ %0
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Optimization

Stochastic Gradient Descent — Adding Momentum

Step size can accumulates momentum if
successive gradients have same direction

VQ\\‘Q

Step size decreases fast if the direction of the
gradients changes

- e

2016/06/01

Momentum only decays slowly and does not stop immediately

V@

Adding the previous step size can lead to acceleration

Decay (“friction”) Constant learning rate

N

q. = g1~V
Wlth gt — Nq fIOSS (Y J X 1qt_1)



Optimization

Stochastic Gradient Descent — Adaptive Learning Rate (RMS Prop)

Continuously low gradient will increase the learning
rate

\/ ~ |
L —L

Continuously large gradients will result in a decrease

of the learning rate \

'O

For each parameter an individual learning rate is
computed

O

2016/06/01

Update rule with an individual learning rate for each parameter 6

g.; =q,; -hixg,;

The learning rate is adapted by a decaying mean of past updates
27 — 2 2
E[gi ]t - bXE[gi ]t—l - (1_ b)xgt,i

The correction of the (constant) learning rate for each parameter.
The epsilon is only for numerical stability

ht =
JE[g] +e




Optimization
Stochastic Gradient Descent — Overview Common Step Rules

Constant  Constant Momentum Nesterov AdaDelta RMSProp RMSProp ADAM

Learning  Learning +
Rate Rate with Momentum
Annealing

@ xx VN

© * VN NN NNV B
O %x x| %X | g e
O %x x x % |
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Optimization

Something feels terribly wrong here, can you see it?

qt = qt—l _h * gt In [21]:
With gt — NC] flOSS (Y1 X 1qt_]_)

0.6

04

2016/06/01

# Define a loss function.

¥ = tf.placeholder(tf.int32, [None]) # The labels.

losses = tf.nn.sparse softmax cross entropy with logits(
labels=Y, logits=raw network output)

loss = tf.reduce mean(losses)

# Computing the gradient.

network parameters = tf.get collection(tf.GraphKeys.TRAINABLE VARIABLES)
grads = tf.gradients(loss, network parameters)

# 56D with mini-batches of size 4 for 180 iterations.
random images = np.random.rand(8, 18, 10, 3).astype(np.float32)
random labels = np.random.randint(@, 3, size=(8,)).astype(np.int32)
for i in xrange(180):

# Sample a mini-batch.

mbatch indices = np.random.choice(np.arange(8), 4)

mbatch images = random images[mbatch indices]

mbatch labels = random labels[mbatch indices]

# Apply SGD update rule with constant learning rate.
for w, g in zip(network parameters, grads):
session.run(tf.assign{w, w - 0.01 * g},
feed dict={X: mbatch images, Y: mbatch labels})

20 40 60 20
Iteration

100
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Regularization
Why Regularization is Important

Training Data
* The goal of learning is not to find a Test Data
solution that explain the training data
perfectly. Y ‘
\ |
®

* The goal of learning is to find a solution
that generalizes well on unseen data
points.

* Regularization tries to prevent the model

to just fit the training data in an arbitrary
way (overfitting). PN °
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Regularization
Weight Decay — Constraining Parameter Values

Intuition:
Discourage the model for choosing undesired values for parameters during learning.

General Approach:
Putting prior assumptions on the weights. Deviations from these assumptions get penalized.

Examples:
L2 —Regularization (Squared L2 norm or Gaussian Prior) L1-Regularization
2 _ O 2 _ o
lql, = a @) Jall, = a‘qu‘
I, ] I, ]

The regularization term is just added to the cost function for the training.

FO (Y, X,q) = o (Y, X, ) + T1|g

loss

A Is a tuning parameter that determines how strong the regularization affects learning.
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Regularization
Early Stopping — Stop Training Just in Time.

Problem
There might be a point during training where the
model starts to overfit the training data at the cost of
generalization.

Highly idealistic view on how early stopping (should) work

Approach
Separate additional data from the training data and
consistently monitor the error on this validation Q
dataset. >
Stop the on this dataset :g

over a certain amount of

(Unknown) Test Error
Validation Error
Training Error

training iterations.

Itis assumed that the validation set approximates heeresreeesnree e esnrranrrerereneneeeneneanenenennanennnenns
the models generalization error (on the test data). - Training iterations

2016/06/01



Regularization
Dropout — Make Nodes Expendable

Problem
Deep learning models are often highly over
parameterized which allows the model to
overfit on or even memorize the training data.

Approach

Transforms the network into an ensemble
with an exponential set of weaker
learners whose parameters are shared.

Usage
Primarily
because of the large number of parameters
Rarely used in convolutional layers
Rarely used in recurrent neural networks (if at
all between the hidden state and output)
2016/06/01



Regularization
Dropout — Make Nodes Expendable

Problem
Deep learning models are often highly over
parameterized which allows the model to
overfit on or even memorize the training data.

Approach

Transforms the network into an ensemble |
with an exponential set of weaker
learners whose parameters are shared.

Usage
Primarily
because of the large number of parameters
Rarely used in convolutional layers
Rarely used in recurrent neural networks (if at
all between the hidden state and output)
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Regularization
Dropout — Make Nodes Expendable

Problem
Deep learning models are often highly over
parameterized which allows the model to
overfit on or even memorize the training data.

Approach

Transforms the network into an ensemble ]
with an exponential set of weaker @

learners whose parameters are shared.

Usage
Primarily
because of the large number of parameters
Rarely used in convolutional layers
Rarely used in recurrent neural networks (if at
all between the hidden state and output)
2016/06/01



Regularization

Batch Normalization — Avoiding Covariate Shift

Problem
Deep neural networks suffer from internal
covariate shift which makes training harder.

Approach
(zero mean,
unit variance)
Regularizes because the training network is
no longer producing deterministic values in
each layer for a given training example

Usage
Can be used with all layers (FC, RNN, Conv)
With Convolutional layers, the mini-batch
statistics are computed from all patches in the
mini-batch.

2016/06/01

Normalize the input X of layer k by the mini-batch
moments:

The next step gives the model the freedom of
learning to undo the normalization if needed:

X ) = gl ® 4 p®

The above two steps in one formula.

- (k) (K)
X (0 = (), R + pl _ o [
g k) g (K)

SX SX

Note: At inference time, an unbiased estimate of
the mean and standard deviation computed from
all seen mini-batches during training is used.



Distributed Training



http://engineering.skymind.io/distributed-deep-learning-
part-1-an-introduction-to-distributed-training-of-neural-
networks
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Deep Learning and Artificial (General) Intelligence



Part Ill — Deep Learning and Artificial (General) Intelligence

Deep Reinforcement Learning
Brief introduction to the problem setting.
End-to-End models for control
Resources

Deep Learning as Building Block for Artificial Intelligence
Think it over - Not all classifications happen in an blink of an eye.
Store and retrieve important information dynamically — Managing explicit memories
Considering long-term consequences - Simulating before acting
Being a multi talent — Multi-task learning and transfer learning

2016/06/01



Deep Reinforcement Learning



Deep Reinforcement Learning
The Reinforcement Learning Setting

2016/06/01

state

"*[ Agent

>

”

Environment ]""—

A

action
iy



Deep Reinforcement Learning
The Reinforcement Learning Setting

Carefully and often manually
designed state representation

""’[ Agent }

state ) reward action
; da,

I r

<o Environment ]-"—
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Deep Reinforcement Learning
Model Free Deep Reinforcement Learning

Use deep learning to
automatically extract
meaningful features from the
state representation.

action
ﬂ,

7

Environment ]*"—

A

State representation consists
of ‘raw’ observations from the

environment.

Note: ,Raw’ is not meant literally here, you
still have to preprocess the data in a
reasonable way.

2016/06/01



Deep Reinforcement Learning
Model Based Deep Reinforcement Learning

Use deep learning to
automatically extract
meaningful features from the
state representation.

""'[ Ag:ent }

state reward action
; d,

I r

< Environment ]*"—

1 A

State representation consists \

of ‘raw’ observations from the Use Deep Learning to learn a

environment. simulator for the environment
Note: ,Raw’ is not meant literally here, you

still have to preprocess the data in a
reasonable way.

2016/06/01



Deep Reinforcement Learning
Model Based Deep Reinforcement Learning

Use deep learning to perform

planning.
> R
[ Agent ]
state reward action
5 4 i,
i Frsei [
:;-'*',rw Environment ]*"—
State representation consists \
environment. simulator for the environment

Note: ,Raw’ is not meant literally here, you
still have to preprocess the data in a
reasonable way.

2016/06/01



Deep Reinforcement Learning
End-to-End Models for Control

Moving away from feeding carefully extracted manual (state) features into the models.

Convolution Convolution Fully connected Fully connected

W
[

02 WINS

4+0
A+
>+
a3+
&+
¥+
£+
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.
[

2
|a]mmiewyn]
@ & & & & 5 & & & 5 5 B BB B B B B BB
& % % & & % & % 0 8 TS SR TSR
@ &% & 8 8 8 & 8 % 8 0 B B 8 BB W B B8N

| z

See also: Facebook and Intel reign supreme in 'Doom' Al deathmatch.

https://www.engadget.com/2016/09/22/facebook-and-intel-reign-supreme-in-doom-ai-deathmatch/
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Deep Reinforcement Learning
Resources

A toolkit for developing and comparing reinforcement
learning algorithms. It supports teaching agents everything

from walking to playing games like Pong or Go.

Read the launch blog post »
View documentation »
View on GitHub »

https://gym.openai.com/

2016/06/01

Jcoreyes's algorithm on Breakout-v0

Episode 20000

3 |

ceobillionaire’s algorithm on LunarLander-v]



Artificial Intelligence



Deep Learning as Building Block for Al
Think it over: Not All Decisions Happen in an Blink of An Eye.

Hierarchical feature extraction in the visual cortex.

: m O
i 0
4 )0 a2
" (3523
¢ o{(T(+) oogssel —»
B B
t okl 00
Qo pae|t--------- Q' gag*--"""""-"- ®©e eedf-----
200 ¢ [loo0oe 00
1 0 =
it 104
0! ol

input retina LGN v1i \' V3 LOC

“For some types of tasks (e.g. for images presented briefly and out of context), it is thought that visual processing
in the brain is hierarchical-one layer feeds into the next, computing progressively more complex features. This is
the inspiration for the “layered” design of modern feed-forward neural networks.” Image (c) Jonas Kubilias
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Deep Learning as Building Block for Al

Non-Stationary Feed-forward Passes in Deep Neural Networks.

2016/06/01

initiallized as 1 vector

Multiple passes of an image through a network to reevaluate the final decision
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Deep Learning as Building Block for Al
Non-Stationary Feed-Forward Passes in Deep Neural Networks.

Multiple passes of an image through a network to reevaluate the final decision
Final Output (Classmcatlon)

@
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m eeDOBE®
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Deep Learning as Building Block for Al
Store and Retrieve Important Information Dynamically — Managing Explicit Memories

d Memory usage
a Controller b Read and write heads C Memory and temporal links

QOutput

G-

Hybrid computing using a neural network with dynamic external memory
Alex Graves et. Al. (Nature 2016)
2016/06/01



Deep Learning as Building Block for Al
Considering Long-Term Consequences — Simulating Before Acting

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison!, Arthur Guez!, Laurent Sifre!, George van den Driessche!,

Julian Schrittwieser', Ioannis Antonoglou', Veda Panneershelvam’, Marc Lanctot!, Sander Dieleman', Dominik Grewe!,
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap!, Madeleine Leach’, Koray Kavukcuogiu',

Thore Graepel' & Demis Hassabis!

O 2 O . °c°u°
$0: Google DeepMind 63 AlphaGo
e Challenge Match

8-15March 2016

. 00:01:00

Google DeepMind
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Deep Learning as Building Block for Al
Planning in Perfect Information Games

2016/06/01
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Deep Learning as Building Block for Al
Dealing with Intractable Many Game States

ts OPOgaymatm s FO &950 -

o'e

http://paulomenin.github.io/go-presentation/images/goban.png

As in many real life settings, the whole
game tree cannot be explored. For this
reason we need automated methods
that help to explore the game tree in a
reasonable way!

0608y “io) afeag a0 .-’. aasse

- - - e
- [] * » [}
i - 1 ’ e,

=> Deep Learning

https://blogs.loc.gov/imaps/category/game-theory/
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Deep Learning as Building Block for Al

Being a Multi-Talent — Multi Task Learning and Transfer learning

2016/06/01

Challenge:

Today, we are able to train systems that sometimes
show super human performance in very complex
tasks. (E.g AlphaGO)

However, the same systems fail miserably when
directly applied to any other (much simpler task).

output,

outputs

Ea)

input




Things we did not cover (not complete...)

Neural Artistic Style Transfer Benchmark datasets
Encoder-Decoder Networks | Fractal Networks Variational Approaches
Siamese Networks o
Mask R-CNN | Pre-Training Sequence Generation
Neural Question Answering
S G i Initialization Learning to learn M ¢ Network
cquence Lencration Vanishing/Exploding Gradient J axout Networks
Highway Networks ' ' '
Transfer Learning g y Dealing with Variable Length Inputs and Outputs
Mechanism for training ultra deep networks _ Hessian-free Optimiza’[ion
Recursive Neural Networks Pixel RNN/CNN

(Unsupervised) pre-training  Evolutionary Methods for Model Training ~ Weight Normalization
: Distributed Training _ :
Deep Q-Learning Layer Compression (e.g. Tensor-Trains)
Speech Modeling

Weight Sharing Character Level Neural Machine Translation

Hyper-parameter tuning

Multi-Lingual Neural Machine Translation More loss functions

Generative adversarial networks
2016/06/01



Deep Learning

Because it Works



Recommended Material

Module 1: Neural Networks

Image Classification: Data-driven Approach, k-Nearest Neighbor, train/val/test splits C O u rS e | n St r U C-I:O rS

L1/L2 distances, hyperparameter search, cross-validation
Linear classification: Support Vector Machine, Softmax

parameteric approach, bias trick, hinge loss, cross-entropy loss, L2 regularization, web demo
Optimization: Stochastic Gradient Descent

optimization landscapes, local search, learning rate, analytic/numerical gradient
Backpropagation, Intuitions

chain rule interpretation, real-valued circuits, patterns in gradient flow

Neural Networks Part 1: Setting up the Architecture

model of a biological neuron, activation functions, neural net architecture, representational power
Neural Networks Part 2: Setting up the Data and the Loss

preprocessing, weight initialization, batch normalization, regularization (L2/dropout), loss functions Fei'Fei |_| Aﬂ d rej Ka rpathy \_J US’[iﬂ JOh nson
Neural Networks Part 3: Learning and Evaluation

gradient checks, sanity checks, babysitting the learning process, momentum (+nesterov), second-order methods,
Adagrad/RMSprop, hyperparameter optimization, model ensembles

Module 2: Convolutional Neural Networks

Convolutional Neural Networks: Architectures, Convolution / Pooling Layers
layers, spatial arrangement, layer patterns, layer sizing patterns, AlexNet/ZFNet/VGGNet case studies,

computational considerations http //C823 1n . Stanfo rd . Ed U/
Understanding and Visualizing Convolutional Neural Networks http //C8231n g Ith U b IO

tSNE embeddings, deconvnets, data gradients, fooling ConvNets, human comparisons

Transfer Learning and Fine-tuning Convolutional Neural Networks

2016/06/01



Recommended Material

CS224d: Deep Learning for Natural Language Processing Course Instructor

0o S, I i
Richard Soche

enjoyed

@ @
the lecture

fifteen  minutes

Course Description

Natural language processing (NLP) is one of the most important technelogies of the information age. Understanding complex language utterances is also a crucial

part of artificial intelligence. Applications of NLP are everywhere because people communicate most everything in language: web search, advertisement, emails,

customer service, language translation, radiclogy reports, etc. There are a large variety of underlying tasks and machine learning models powering NLP

applications. Recently, deep learning approaches have obtained very high performance across many different NLP tasks. These madels can often be trained with a http ://C8224d ] Stanfo rd . ed U/
single end-to-end model and do not require traditional, task-specific feature engineering. In this spring guarter course students will learn to implement, train, debug,

visualize and invent their own neural network models. The course provides a deep excursion into cutting-edge research in deep learning applied to NLP. The final

project will involve training a complex recurrent neural network and applying it to a large scale NLP problem. On the model side we will cover word vector

representations, window-based neural networks, recurrent neural networks, long-short-term-memory models, recursive neural networks, convelutional neural

networks as well as some very novel models involving a memory component. Through lectures and programming assignments students will learn the necessary

engineering tricks for making neural networks work on practical problems.

2016/06/01



Recommended Material

INTRODUCTION
Tutorial on Neural Networks (Deep Learning and Unsupervised Feature
Learning): http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
Deep Learning for Computer Vision lecture: http://cs231n.stanford.edu (http://cs231n.qgithub.io)
Deep Learning for NLP lecture: http://cs224d.stanford.edu (http://cs224d.stanford.edu/syllabus.html)
Deep Learning for NLP (without magic) tutorial: http://Ixmls.it.pt/2014/socher-Ixmlis.pdf (Videos from NAACL
2013: http://nlp.stanford.edu/courses/NAACL2013)
Bengio's Deep Learning book: http://www.deeplearningbook.org

2016/06/01



Recommended Material

PARAMETER INITIALIZATION
Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." International Conference on Atrtificial Intelligence and Statistics. 2010.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on
ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1026-1034).

BATCH NORMALIZATION
loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of The 32nd International Conference on Machine Learning (pp. 448-456).
Cooijmans, T., Ballas, N., Laurent, C., & Courville, A. (2016). Recurrent Batch Normalization. arXiv preprint
arXiv:1603.09025.

DROPOUT
Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint

arXiv:1207.0580 (2012).
Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine

Learning Research 15.1 (2014): 1929-1958.

2016/06/01



Recommended Material

OPTIMIZATION & TRAINING

2016/06/01

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning Research, 12, 2121-2159.

Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2.

Sutskever, |., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep
learning. In Proceedings of the 30th International Conference on Machine Learning (ICML) (pp. 1139-1147).
Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization.arXiv preprint arXiv:1412.6980.

Martens, J., & Sutskever, I. (2012). Training deep and recurrent networks with hessian-free optimization. In Neural
networks: Tricks of the trade (pp. 479-535). Springer Berlin Heidelberg.



Recommended Material

COMPUTER VISION

2016/06/01

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems (pp. 1097-1105).

Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in
face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1701-1708).
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9).
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
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