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Nonlinear Mappings and Nonlinear Classifiers

• Regression:

– Linearity is often a good assumption when many inputs influence the output

– Some natural laws are (approximately) linear F = ma

– But in general, it is rather unlikely that a true function is linear

• Classification:

– Linear classifiers also often work well when many inputs influence the output

– But also for classifiers, it is often not reasonable to assume that the classification

boundaries are linear hyper planes
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Trick

• We simply transform the input into a high-dimensional space where the regressi-

on/classification is again linear!

• Other view: let’s define appropriate features

• Other view: let’s define appropriate basis functions

• XOR-type problem with patterns

0 0 → +1
1 0 → −1
0 1 → −1
1 1 → +1
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XOR is not linearly separable
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Trick: Let’s Add Basis Functions

• Linear Model: input vector: 1, x1, x2

• Let’s consider x1x2 in addition

• The interaction term x1x2 couples two inputs nonlinearly
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With a Third Input z3 = x1x2 the XOR Becomes Linearly
Separable

f(x) = 1− 2x1 − 2x2 + 4x1x2 = φ1(x)− 2φ2(x)− 2φ3(x) + 4φ4(x)

with φ1(x) = 1, φ2(x) = x1, φ3(x) = x2, φ4(x) = x1x2
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f(x) = 1− 2x1 − 2x2 + 4x1x2

7



Separating Planes
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A Nonlinear Function
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f(x) = x− 0.3x3

Basis functions φ1(x) = 1, φ2(x) = x, φ3(x) = x2, φ4(x) = x3 und w =

(0,1,0,−0.3)
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Basic Idea

• The simple idea: in addition to the original inputs, we add inputs that are calculated

as deterministic functions of the existing inputs, and treat them as additional inputs

• Example: Polynomial Basis Functions

{1, x1, x2, x3, x1x2, x1x3, x2x3, x
2
1, x

2
2, x

2
3}

• Basis functions {φm(x)}Mφ
m=1

• In the example:

φ1(x) = 1 φ2(x) = x1 φ6(x) = x1x3 ...

• Independent of the choice of basis functions, the regression parameters are calculated

using the well-known equations for linear regression
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Linear Model Written as Basis Functions

• We can also write a linear model as a sum of basis functions with

φ0(x) = 1 φ1(x) = x1 φM−1(x) = xM−1 ...
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Review: Penalized LS for Linear Regression

• Multiple Linear Regression:

fw(x) = w0 +
M−1∑
j=1

wjxj = xTw

• Regularized cost function

costpen(w) =
N∑
i=1

(yi − fw(xi))2 + λ

M−1∑
i=0

w2
i

• The penalized LS-Solution gives

ŵpen =
(
XTX + λI

)−1
XTy with X =

 x1,0 . . . x1,M−1
. . . . . . . . .
xN,0 . . . xN,M−1
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Regression with Basis Functions

• Model with basis functions:

fw(x) =

Mφ∑
m=1

wmφm(x)

• Regularized cost function with weights as free parameters

costpen(w) =
N∑
i=1

yi − Mφ∑
m=1

wmφm(xi)

2

+ λ

MΦ∑
m=1

w2
m

• The penalized least-squares solution

ŵpen =
(
ΦTΦ + λI

)−1
ΦTy
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with

Φ =

 φ1(x1) . . . φMφ
(x1)

. . . . . . . . .
φ1(xN) . . . φMφ

(xN)





Nonlinear Models for Regression and Classification

• Regression:

fw(x) =

Mφ∑
m=1

wmφm(x)

As discussed, the weights can be calculated via penalized LS

• Classification:

ŷ = sign(fw(x)) = sign

 Mφ∑
m=1

wmφm(x)


The Perceptron learning rules can be applied, if we replace 1, xi,1, xi,2, ... with

φ1(xi), φ2(xi), ...
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Which Basis Functions?

• The challenge is to find problem specific basis functions which are able to effective-

ly model the true mapping, resp. that make the classes linearly separable; in other

words we assume that the true dependency f(x) can be modelled by at least one

of the functions fw(x) that can be represented by a linear combination of the basis

functions, i.e., by one function in the function class under consideration

• If we include too few basis functions or unsuitable basis functions, we might not be

able to model the true dependency

• If we include too many basis functions, we need many data points to fit all the unknown

parameters (This sound very plausible, although we will see in the lecture on kernels

that it is possible to work with an infinite number of basis functions)
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Radial Basis Function (RBF)

• We already have learned about polynomial basis functions

• Another class are radial basis functions (RBF). Typical representatives are Gaussian

basis functions

φj(x) = exp

(
−

1

2s2
‖x− cj‖2

)
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Three RBFs (blue) form f(x) (pink)
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Optimal Basis Functions

• So far all seems to be too simple

• Here is the catch: the number of“sensible”basis functions increases exponentially with

the number of inputs

• If I am willing to use K RBF-basis functions“per dimension”. then I need KM RBFs

in M dimensions

• We get a similar exponential increase for polynomial basis functions; the number of

polynomial basis functions of a given degree increases quickly with the number of

dimensions (x2); (x2, y2, xy); (x2, y2, z2, xy, xz, yz), . . .

• The most important challenge: How can I get a small number of relevant basis func-

tions, i.e., a small number of basis functions that define a function class that contains

the true function (true dependency) f(x)?
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Forward Selection: Stepwise Increase of Model Class Complexity

• Start with a linear model

• Then we stepwise add basis functions; at each step add the basis function whose

addition decreases the training cost the most (greedy approach)

• Examples: Polynomklassifikatoren (OCR, J. Schürmann, AEG)

– Pixel-based image features (e.g., of hand written digits)

– Dimensional reduction via PCA (see later lecture)

– Start with a linear classifier and add polynomials that significantly increase per-

formance

– Apply a linear classifier
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Backward Selection: Stepwise Decrease of Model Class
Complexity (Model Pruning)

• Start with a model class which is too complex and then incrementally decrease com-

plexity

• First start with many basis functions

• Then we stepwise remove basis functions; at each step remove the basis function

whose removal increases the training cost the least (greedy approach)

• A stepwise procedure is not optimal. The problem of finding the best subset of K

basis functions is NP-hard
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Model Selection: RBFs

• Sometimes it is sensible to first group (cluster) data in input space and to then use

the cluster centers as positions for the Gaussian basis functions

• The widths of the Gaussian basis functions might be derived from the variances of the

data in the cluster

• An alternative is to use one RBF per data point. The centers of the RBFs are simply

the data points themselves and the widths are determined via some heuristics (or via

cross validation, see later lecture)
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RBFs via Clustering
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One Basis Function per Data Point

24



Application-Specific Features

• Often the basis functions can be derived from sensible application features

– Given an image with 256 × 256 = 65536 pixels. The pixels form the input

vector for a linear classifier. This representation would not work well for face

recognition

– With fewer than 100 appropriate features one can achieve very good results (ex-

ample: PCA features, see later lecture)

• The definition of suitable features for documents, images, gene sequences, ... is a very

active research area

• If the feature extraction already delivers many features, it is likely that a linear model

will solve the problem and no additional basis functions need to be calculated

• This is quite remarkable: learning problems can become simpler in high-dimensions,

in apparent contradiction to the famous“curse of dimensionality”(Bellman) (although
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there still is the other “curse of dimensionality” since the number of required basis

functions might increase exponentially with the number of inputs! )

• If inputs are random, then data points become equidistant in high dimensions

• This is not the case for a high-dimensional space generated by transformations (basis

functions): the data are on a low dimensional manifold!

• Thus one often applies first dimensionality reduction (PCA) to remove noise on

the input and then increases dimensionality again by using basis functions!



Curse or Blessing of Dimensionality

• With M = 500 inputs, we generated random inputs {xi}5i=100

• Curse of dimensionality: near equidistance between data points (see next figure):

distance-based methods, such as nearest-neighbor classifiers, might not work well

• Blessing of dimensionality: A linear regression model with N = 1000 training data

points gives excellent results
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Curse or Blessing of Dimensionality in RBF Space

• We start with random data points in M = 2. The left figure shows the distribution

of data points distances

• We calculate Mφ RBF-basis functions {φm(x)}500
m=1

• In the original space but also in the RBF space, distances are not peaked: in the RBF

space, data lives in a 2-dim manifold in 500-dim space

27





Interpretation of Systems with Fixed Basis Functions

• The best way to think about models with fixed basis functions is that they implement

a form of prior knowledge: we make the assumption that the true function can be

modelled by the set of weighted basis function

• The data then favors certain members of the function class

• In the lecture on kernel systems we will see that the set of basis functions imply specific

correlations between (mostly near-by) function values, implementing a smoothness

prior
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Function Spaces (Advanced)

• Consider the function f(x)

• Often x is assumed to be an element in a vector space. Example: x ∈ RM

• A function f(·) can also be an element of a vector space
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Is an Image a 2-D Function or an N2 Vector?

• greyValue(i, j) = f(i, j), with i = 1, . . . , N, j = 1, . . . , N

• We can model with basis functions

f(i, j) =

Mφ∑
m=1

wmφm(i, j)

• Typical 2-D basis functions used in image analysis are Fourier basis functions and

cosine basis functions with Mφ = N2

• A discrete pixel image has finite support (is only defined at the N2 pixels)
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Or is an Image an N2-dimensional Vector

• f is an N2-dimensional vector with

fi(N−1)+j = f(i, j) i = 1, . . . , N, j = 1, . . . , N

• We can model using vector algebra

f =

Mφ∑
m=1

wm~φm

With Mφ = N2 linearly independent basis functions, we can approximate any image,

and an image becomes an element in an N2-dimensional vector space
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Illustration
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Functions with Infinite Support

• Also a continuous function f(x) with infinite support (e.g., x ∈ R2 ) can be

interpreted as an element in an infinite dimensional vector space (Hilbert space)

• We can model with (a finite or an infinite number of) basis functions

f(x) =

Mφ∑
m=1

wmφm(x)

• Special case: the basis functions are δ functions

f(x) =

∫
f(x′)δ(x− x′) dx′

• Recall that the dot product (scalar product) 〈a,b〉 =
∑
i aibi = aTb defines an

inner product for vectors

• Similarly, we can derive a basis-function specific inner products as

〈f , g〉 = wT
f wg
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• With square integrable functions and δ functions as basis functions we get

〈f , g〉 =

∫
f(x)g(x) dx
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