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Learning Machine: The Linear Model / ADALINE

• As with the Perceptron we start with

an activation functions that is a linearly

weighted sum of the inputs

h =
M−1∑
j=0

wjxj

(Note: x0 = 1 is a constant input, so

that w0 is the bias)

• New: The activation is the output

(no thresholding)

ŷ = fw(x) = h

• Regression: the target function can take

on real values
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Method of Least Squares

• Squared-loss cost function:

cost(w) =
N∑
i=1

(yi − fw(xi))
2

• The parameters that minimize the cost function are called least squares (LS) estimators

wls = argmin
w

cost(w)

• For visualization, on chooses M = 2 (although linear regression is often applied to

high-dimensional inputs)
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Least-squares Estimator for Regression

One-dimensional regression:

fw(x) = w0 + w1x

w = (w0, w1)
T

Squared error:

cost(w) =
N∑
i=1

(yi − fw(xi))
2

Goal:

wls = argmin
w

cost(w) w0 = 1, w1 = 2, var(ε) = 1
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Least-squares Estimator in General

General Model:

ŷi = f(xi,w) = w0 +
M−1∑
j=1

wjxi,j

= xTi w

w = (w0, w1, . . . wM−1)
T

xi = (1, xi,1, . . . , xi,M−1)
T
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Linear Regression with Several Inputs
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Contribution to the Cost Function of one Data Point
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Gradient Descent Learning

• Initialize parameters (typically using small random numbers)

• Adapt the parameters in the direction of the negative gradient

• With

cost(w) =
N∑
i=1

yi −M−1∑
j=0

wjxi,j

2

• The parameter gradient is (Example: wj)

∂cost

∂wj
= −2

N∑
i=1

(yi − fw(xi))xi,j

• A sensible learning rule is

wj ←− wj + η

N∑
i=1

(yi − fw(xi))xi,j
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ADALINE-Learning Rule

• ADALINE: ADAptive LINear Element

• The ADALINE uses stochastic gradient descent (SGE)

• Let xt and yt be the training pattern in iteration t. The we adapt, t = 1,2, . . .

wj ←− wj + η(yt − ŷt)xt,j j = 1,2, . . . ,M

• η > 0 is the learning rate, typically 0 < η << 0.1

• Compare: the Perceptron learning rule (only applied to misclassified patterns)

wj ←− wj + ηytxt,j j = 1, . . . ,M
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Analytic Solution

• The least-squares solution can be calculated in one step
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Cost Function in Matrix Form

cost(w) =
N∑
i=1

(yi − fw(xi))
2

= (y −Xw)T (y −Xw)

y = (y1, . . . , yN)T

X =

 x1,0 . . . x1,M−1
. . . . . . . . .
xN,0 . . . xN,M−1
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Calculating the First Derivative

Matrix calculus:

Thus

∂cost(w)

∂w
=
∂(y −Xw)

∂w
× 2(y −Xw) = −2XT (y −Xw)
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Setting First Derivative to Zero

Calculating the LS-solution:

∂cost(w)

∂w
= −2XT (y −Xw) = 0

ŵls = (XTX)−1XTy

Complexity (linear in N !):

O(M3 +NM2)

ŵ0 = 0.75, ŵ1 = 2.13
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Alternative Convention

Comment: one also finds the conventions:

∂

∂x
Ax = A

∂

∂x
xTx = 2xT

∂

∂x
xTAx = xT (A+AT )

Thus

∂cost(w)

∂w
= 2(y −Xw)T ×

∂(y −Xw)

∂w
= −2(y −Xw)TX

This leads to the same solution
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Stability of the Solution

• When N >> M , the LS solution is stable (small changes in the data lead to small

changes in the parameter estimates)

• When N < M then there are many solutions which all produce zero training error

• Of all these solutions, one selects the one that minimizes
∑M
i=0w

2
i (regularised

solution)

• Even with N > M it is advantageous to regularize the solution, in particular with

noise on the target
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Linear Regression and Regularisation

• Regularised cost function (Penalized Least Squares (PLS), Ridge Regression, Weight

Decay): the influence of a single data point should be small

costpen(w) =
N∑
i=1

(yi − fw(xi))
2 + λ

M−1∑
i=0

w2
i

ŵpen =
(
XTX+ λI

)−1
XTy

Derivation:

∂costpen(w)

∂w
= −2XT (y −Xw) + 2λw = 2[−XTy+ (XTX+ λI)w]
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Example: Correlated Input with no Effect on Output
(Redundant Input)

• Three data points are generated as (system; true model)

y = 0.5+ x1 + εi

Here, εi is independent noise

• Model 1 (correct structure)

fw(x) = w0 + w1x1

• Training data for Model 1:

x1 y

-0.2 0.49
0.2 0.64
1 1.39

• The LS solution gives wls = (0.58,0.77)T
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• In comparison, the true parameters are: w = (0.50,1.00)T . The parameter esti-

mates are reasonable, considering that only three training patterns are available



Model 2

• For Model 2, we generate a second correlated input

xi,2 = xi,1 + δi

Again, δi is uncorrelated noise

• Model 2 (redundant additional input)

fw(xi) = w0 + w1xi,1 + w2xi,2

Data of Model 2:

x1 x2 y

-0.2 -0.1996 0.49
0.2 0.1993 0.64
1 1.0017 1.39

• The least squares solution gives wls = (0.67,−136,137)T !!! The parameter

estimates are far from the true parameters: This might not be surprising since M =

N = 3
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Model 2 with Regularisation

• As Model 2, only that large weights are penalized

• The penalized least squares solution gives wpen = (0.58,0.38,0.39)T , also

difficult to interpret !!!

• (Compare: the LS-solution for Model 1 gave wls = (0.58,0.77))T
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Performance on Training Data for the Models

• Training:

y M1 : ŷML M2 : ŷML M2 : ŷpen
0.50 0.43 0.50 0.43
0.65 0.74 0.65 0.74
1.39 1.36 1.39 1.36

• For Model 1 and Model 2 with regularization we have nonzero error on the training

data

• For Model 2 without regularization, the training error is zero

• Thus, if we only consider the training error, we would prefer Model 2 without regula-

rization
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Performance on Test Data for the Models

• Test Data:

y M1 : ŷML M2 : ŷML M2 : ŷpen
0.20 0.36 0.69 0.36
0.80 0.82 0.51 0.82
1.10 1.05 1.30 1.05

• On test data Model 1 and Model 2 with regularization give better results

• Even more dramatic: extrapolation (not shown)

• As a conclusion: Model 1, which corresponds to the system performs best. For Model

2 (with additional correlated input) the penalized version gives best predictive results,

although the parameter values are difficult to interpret. Without regularization, the

prediction error of Model 2 on test data is large. Asymptotically, with N → ∞,

Model 2 might learn to ignore the second input and w0 and w1 converge to the true

parameters.
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Remarks

• If one is only interested in prediction accuracy: adding inputs liberally can be beneficial

if regularization is used (in ad placements and ad bidding, hundreds or thousands of

features are used)

• The weight parameters of useless (noisy) features become close to zero with regula-

rization (ill-conditioned parameters); without regularization they might assume large

positive or negative values

• If parameter interpretation is essential:

• Forward selection; start with the empty model; at each step add the input that reduces

the error most

• Backward selection (pruning); start with the full model; at each step remove the input

that increases the error the least

• But no guarantee, that one finds the best subset of inputs or that one finds the true

inputs
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Experiments with Real World Data: Data from Prostate Cancer
Patients

8 Inputs, 97 data points; y: Prostate-specific antigen

10-times cross validation error
LS 0.586

Best Subset (3) 0.574
Ridge (Penalized) 0.540
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GWAS Study

Trait (here: the disease systemic sclerosis) is the output and the SNPs are the inputs. The

major allele is encoded as 0 and the minor allele as 1. Thus wj is the influence of SNP

j on the trait. Shown is the (log of the p-value) of wj ordered by the locations on the

chromosomes. The weights can be calculated by penalized least squares (ridge regression)
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