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e As with the Perceptron we start with

an activation functions that is a linearly

@ weighted sum of the inputs
I /s M-1
7 _
h = Z W44
h j=0
(Note: zg = 1 is a constant input, so

that wq is the bias)
e New: The activation is the output
(no thresholding)

Y= fw(x) =h

e Regression: the target function can take

on real values



e Squared-loss cost function:

N
cost(w) = Z(yz- — fw(x:))?
=1

e The parameters that minimize the cost function are called least squares (LS) estimators

W), = arg m“ifn cost(w)

e For visualization, on chooses M

high-dimensional inputs)

2 (although linear regression is often applied to



One-dimensional regression:
fw(z) = wo + wiz

T
w = (wp, w1)

Squared error:

N
cost(w) = Y (yi — fw(®:))?
1=1

Goal:

W, = arg m“ifn cost(w)
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LINEARE REGRESSION: Daten und wahre Funktion
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General Model:

M-1
i = (W) =wo+ > wjz;
j=1

W = (’UJO,’UJ]_, . 'wM—l)T

Xi = (1733i,17 R 7332',M—1)T
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Contribution to the Cost Function of one Data Point

cost,




Initialize parameters (typically using small random numbers)

Adapt the parameters in the direction of the negative gradient
With
N M-—1 2
COSt(W) = Z Y; — Z W;Tyj
i=1 =0
The parameter gradient is (Example: w;)
N
dcost
S = 2 > (i — fw(x))my
w; —
1=1

A sensible learning rule is

N
w; +— wj + 7 Z(yq; — fw(x;))z;
i—1



e ADALINE: ADAptive LINear Element

e The ADALINE uses stochastic gradient descent (SGE)

e lLet x; and y+ be the training pattern in iteration t. The we adapt, t = 1,2, ...

w]<—w]+7’](yt—:’g\t>$t,] j=1312,....M

e 17 > O is the learning rate, typically O < n << 0.1
e Compare: the Perceptron learning rule (only applied to misclassified patterns)

wi — w; +nyexe,; J=1,..., M



e The least-squares solution can be calculated in one step
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N
cost(w) = Z(yz- — fw(x:))?
1 =1
= (y - Xw)!(y — Xw)
y = (y1, -, yn)’

1,0 --- T1,M-1

mN)O ZCN,M—l
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Matrix calculus:

dy
M 0x
Ax Al
x! A A
x!x 2X
T T
X AXx Ax + A’ x

Thus
ocost(w)  O(y — Xw)

x 2(y — Xw) = —2X1 (y — Xw)
ow ow




Calculating the LS-solution:

8COSt(W) — —QXT(y _ XW) =0
Ow

Wi, = (XTX) X1y
Complexity (linear in N!):

O(M3 4+ NM?)

LINEAR REGRESSION: LS-Loesung (rot)
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Wo = 0.75,%1 = 2.13
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Comment: one also finds the conventions:

iAX = A 3XT

oOx ox

X=2XT

Thus

9

Ox

x'Ax = xT'(A+ AT)

dcost(w) _ 2y — Xw)T x Oy — Xw) _

OwW

This leads to the same solution

OwW

—2(y — Xw)!X
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When N >> M, the LS solution is stable (small changes in the data lead to small
changes in the parameter estimates)

When N < M then there are many solutions which all produce zero training error

M 2

Of all these solutions, one selects the one that minimizes ) ;= 4 w? (regularised

1
solution)

Even with N > M it is advantageous to regularize the solution, in particular with

noise on the target
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e Regularised cost function (Penalized Least Squares (PLS), Ridge Regression, Weight

Decay): the influence of a single data point should be small

N M—-1
cost ™ (w) = 3 (yi — fw(x))Z +A Y w?

—1

Derivation:

acos(t;@”(w) = —2X"(y — Xw) + 22w = 2[- X"y + (X' X + A)w]
W
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Three data points are generated as (system; true model)

y=0.5+x1 + ¢

Here, €; is independent noise

Model 1 (correct structure)
fw(x) = wo + wizy

Training data for Model 1:

L1 Y

-0.2 0.49
0.2 0.64
1 1.39

The LS solution gives w;, = (0.58,0.77)%
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e In comparison, the true parameters are: w = (0.50, 1.OO)T. The parameter esti-

mates are reasonable, considering that only three training patterns are available



e For Model 2, we generate a second correlated input

T;2 =x;1+ 9

Again, 9; is uncorrelated noise

e Model 2 (redundant additional input)

fw(x;) = wo + wix; 1 + woz; 2

L1 L2 Yy

-0.2 -0.1996 0.49

0.2 0.1993 0.64
1 1.0017 1.39

Data of Model 2:

e The least squares solution gives w;, = (0.67,—136,137)% Il The parameter
estimates are far from the true parameters: This might not be surprising since M =
N =3
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e As Model 2, only that large weights are penalized

e The penalized least squares solution gives Wpep = (O.58,O.38,O.39)T, also
difficult to interpret !!!

e (Compare: the LS-solution for Model 1 gave w;, = (0.58, 0.77)7F
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Training:

Y Ml:@ML MQZ@ML M2:?§pen

0.50 0.43 0.50 0.43
0.65 0.74 0.65 0.74
1.39 1.36 1.39 1.36

For Model 1 and Model 2 with regularization we have nonzero error on the training
data

For Model 2 without regularization, the training error is zero

Thus, if we only consider the training error, we would prefer Model 2 without regula-

rization
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Test Data:

Y Ml::l’jML MQZZIIJML MQngen

0.20 0.36 0.69 0.36
0.80 0.82 0.51 0.82
1.10 1.05 1.30 1.05

On test data Model 1 and Model 2 with regularization give better results
Even more dramatic: extrapolation (not shown)

As a conclusion: Model 1, which corresponds to the system performs best. For Model
2 (with additional correlated input) the penalized version gives best predictive results,
although the parameter values are difficult to interpret. Without regularization, the
prediction error of Model 2 on test data is large. Asymptotically, with N — oo,
Model 2 might learn to ignore the second input and wqg and wq converge to the true

parameters.
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If one is only interested in prediction accuracy: adding inputs liberally can be beneficial
if regularization is used (in ad placements and ad bidding, hundreds or thousands of
features are used)

The weight parameters of useless (noisy) features become close to zero with regula-
rization (ill-conditioned parameters); without regularization they might assume large
positive or negative values

If parameter interpretation is essential:

Forward selection; start with the empty model; at each step add the input that reduces
the error most

Backward selection (pruning); start with the full model; at each step remove the input
that increases the error the least

But no guarantee, that one finds the best subset of inputs or that one finds the true
inputs
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8 Inputs, 97 data points; y: Prostate-specific antigen

LS 0.586
10-times cross validation error  Best Subset (3) | 0.574
Ridge (Penalized) | 0.540
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Trait (here: the disease systemic sclerosis) is the output and the SNPs are the inputs. The
major allele is encoded as 0 and the minor allele as 1. Thus w; is the influence of SNP
j on the trait. Shown is the (log of the p-value) of w; ordered by the locations on the

chromosomes. The weights can be calculated by penalized least squares (ridge regression)
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