Linear Algebra (Review)

Volker Tresp 2017

Vectors

- k is a scalar (a number)
- c is a column vector. Thus in two dimensions,

$$\mathbf{c} = \left(\begin{array}{c} c_1 \\ c_2 \end{array}\right)$$

- (Advanced: More precisely, a vector is defined in a vector space. Example: $\mathbf{c} \in \mathbb{R}^2$ and $\mathbf{c} = c_i \mathbf{e}_1 + c_2 \mathbf{e}_2$ with an orthogonal basis $\mathbf{e}_1, \mathbf{e}_2$. We denote with \mathbf{c} both the vector and its component representation)
- c_i is the *i*-th component of **c**
- $\mathbf{c}^T = (c_1, c_2)$ is a row vector, the transposed of \mathbf{c}

Matrices

- A is a matrix. (Advanced: A matrix is a 2-D array that is defined with respect to a vector space.)
- If A is a $k \times l$ -dimensional matrix,
 - then the transposed A^T is an $l\times k\text{-dimensional}$ matrix
 - the columns (rows) of A are the rows (columns) of A^T and vice versa

Addition of Two Vectors

- $\bullet \ {\sf Let} \ c = a + d$
- Then $c_j = a_j + d_j$

Multiplication of a Vector with a Scalar

- $\mathbf{c} = k\mathbf{a}$ is a vector with $c_j = ka_j$
- C = kA is a matrix of the dimensionality of A, with $c_{i,j} = ka_{i,j}$

Scalar Product of Two Vectors

• The scalar product (also called dot product) is defines as

$$\mathbf{a} \cdot \mathbf{c} = \mathbf{a}^T \mathbf{c} = \sum_{m=1}^l a_m c_m$$

and is a scalar

• Advanced: The dot product is identical to the **inner product** $\langle a, c \rangle$ for Euclidean vector spaces with orthonormal basis vectors e_i

$$\langle \mathbf{a}, \mathbf{c} \rangle = \left(\sum_{i} a_i \mathbf{e}_i\right) \left(\sum_{i'} c_{i'} \mathbf{e}_{i'}\right) = \sum_{i} a_i c_i = \mathbf{a} \cdot \mathbf{c} = \mathbf{a}^T \mathbf{c}$$

Matrix-Vector Product

- A matrix consists of many row vectors. So a product of a matrix with a column vector consists of many scalar products of vectors
- If A is a $k \times l$ -dimensional matrix and c a l-dimensional column vector
- Then d = Ac is a k-dimensional column vector d with

$$d_j = \sum_{m=1}^l a_{j,m} c_m$$

Matrix-Matrix Product

- A matrix also consists of many column vectors. So a product of matrix with a matrix consists of many matrix-vector products
- If A is a $k \times l$ -dimensional matrix and C an $l \times p$ -dimensional matrix
- Then D = AC is a $k \times p$ -dimensional matrix with

$$d_{i,j} = \sum_{m=1}^{l} a_{i,m} c_{m,j}$$

Multiplication of a Row-Vector with a Matrix

• Multiplication of a row vector with a matrix is a row vector. If A is a $k \times l$ -dimensional matrix and d a k-dimensional Vector and if

$$\mathbf{c}^T = \mathbf{d}^T A$$

Then c is a *l*-dimensional vector with $c_i = \sum_{m=1}^k d_m a_{m,i}$

Outer Product

Special case: Multiplication of a column vector with a row vector is a matrix.
Let d be a k-dimensional vector and c be a p-dimensional vector, then

$$A = \mathbf{d}\mathbf{c}^T$$

is a $k \times p$ matrix with $a_{i,j} = d_i c_j$. Advanced: This is also called an **outer product** (when related to vector spaces) and is written as $\mathbf{d} \otimes \mathbf{c}$. Note that a matrix is generated from two vectors

• Advanced: An outer product is a special case of a **tensor product**

Matrix Transposed

 $\bullet~{\rm The~transposed}~A^T$ changes rows and columns

 $\left(A^T\right)^T = A$

$$(AC)^T = C^T A^T$$

Unit Matrix

 ${\color{black}\bullet}$

$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & & \dots & \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

Diagonal Matrix

• $k \times k$ diagonal matrix:

$$A = \begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} & \dots & 0 \\ & & \dots & \\ 0 & \dots & 0 & a_{k,k} \end{pmatrix}$$

Matrix Inverse

- Let A be a square matrix
- If there is a unique inverse matrix A^{-1} , then we have

$$A^{-1}A = I \quad AA^{-1} = I$$

• If the corresponding inverse exist, $(AC)^{-1} = C^{-1}A^{-1}$

Orthogonal Matrices

• Orthogonal Matrix (more precisely: Orthonormal Matrix): *R* is a (quadratic) orthogonal matrix, if all columns are orthonormal. It follows (non-trivially) that all rows are orthonormal as well and

$$R^T R = I \quad R R^T = I \quad R^{-1} = R^T \tag{1}$$

Singular Value Decomposition (SVD)

• Any $N \times M$ matrix X can be factored as

$$X = UDV^T$$

where U and V are both **orthonormal** matrices. U is an $N \times N$ Matrix and V is an $M \times M$ Matrix.

- D is an $N \times M$ diagonal matrix with diagonal entries (singular values) $d_i \ge 0, i = 1, ..., \tilde{r}$, with $\tilde{r} = \min(M, N)$
- The \mathbf{u}_j (columns of U) are the left singular vectors
- The \mathbf{v}_j (columns of V) are the right singular vectors
- The d_i (diagonal entries of D) are the singular values

