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Ockham chooses a razor



Conditional probability:

Product rule

Chain rule

P(x1,...,zp) = P(x1)P(x2|z1) P(x3|T1,22) ... P(2)/]21,

Bayes theorem

P(ylx) =

P(z,y)
P(x)

with P(x) > 0O

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

P(y|lx) =

P(z,y) _ P(zly)P(y)

P(x)

P(x)

P(x) >0

@A)



e Marginal distribution

P(z) =) P(z,y)
Yy

e Independent random variables

P(z,y) = P(z)P(y|z) = P(x)P(y)



e A random variable X (c) is a variable (more precisely a function), whose value

depends on the result of a random process
e Examples:

— cis a coin toss and X (¢) = 1 if the result is head

— cis a person, randomly selected from the University of Munich. X (c¢) is the height

of that person

e A discrete random variable X can only assume a countable number of states.
Thus X = z with z € {x1,29,...}



e A probability distribution specifies with which probability a random variable assumes

a particular state
e A probability distribution of X can be defined via a probability function f(z):

P(X =) = P({c: X(c) = 2}) = f(=)

e f(x) is the probability function and x is a realisation of X

e One often writes

f(x) = Px(z) = P(x)



e In statistics, one attempts to derive the probabilities from data (machine learning)

e In probability one assumes either that some probabilities are known, or that they can

be derived from some atomic events

e Atomic event: using some basic assumptions (symmetry, neutrality of nature, fair

coin, ...) one assumes the probabilities for some elementary events



Atomic events: ¢ = {h,t}

The probability of each elementary event is 1 /2

X (c) is a random variable that is equal to one if the result is head and is zero

otherwise

P(X=1)=1/2



e From now on we will not refer to any atomic event; for complex random variables
like the height or the weight of a person, it would be pretty much impossible to think
about the atomic events that produced height and weight

e We directly look at the random variables and their dependencies

e The running example will be the distribution of height H and weight W of students
in Munich. For simplicity we assume that there are only two states for either variables:
H =t for a tall person and H = s for a small person. Similarly, W = b for a big
person and W = [ for a light person



Univariate Probabilities

Sample size 100

P(H=t) = 0.5
P(H=s)=0.5

P(W=b)=0.6
P(W=1)=0.3

(in the sample
(inthe sample

(in the sample
(in the sample

, 50 persons were tall)
, 50 persons were small)

, 60 persons were big)
, 30 persons were light)



e Define two random variables X (¢) and Y (¢). A multivariate distribution is de-

fined as:

Plx,y) =P(X=z2,Y=y)=P(X =z ANY =vy)

e Note that defines the probability of a conjunction!



Multivariate Probabilities

big 0.4 \
(40)

0
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short tall
H

P(H=tW=b) = 0.4 (inthe sample, 40 persons were tall and big)



e If two random variables are independent, then P(X,Y ) = P(X)P(Y). Thisis not
the case in our example since P(t,b) = 0.4 = P(t)P(b) = 0.5 x 0.6 = 0.3

e Two random variables can be mutually exclusively true: P(X = 1,Y = 1) = 0.

Also not the case in our example (we identify b and ¢ with true)

e If M binary random variables X, ..., X  are all mutually exclusive and collectively
exhaustive (i.e., exactly one variable assumes the state 1 in a given sample), then the

M variables can be represented by one random variable with M states



Mutual Exclusive and Exhaustive
Random Variables

A person belongs to exactly one age class

Teen Young Adult Adult Middle Aged

+ 4 binary random variables that are mutually exclusive and collectively exhaustive

+ Teen=false, YoungAduli=true, Adult=false, MiddleAge=false

+ 1discrete random variable with 4 states

+ Age=YoungAduli



e It should be clear from the discussion that the definition of random variables in a
domain is up to the researcher, although there is often a “natural” choice (height of a

person, income of a person, age of a person, ...)
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e | am interested in the probability distribution of the random variable Y but consider

only atomic events, where X =

e Definition of a conditional probability distribution

P(X=z,Y =vy)

(X = 2) with P(X =x) >0

P(Y =y|X =12) =

e The distribution is identical to the one for the unconditional case, only that | have to
divide by P(X = x) (re-normalize)
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Conditional Probabilities P(W[H}

big

light
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short

tall

P(b[t)=P(t,b)/P(t)=
0.4/0.5=0.8

P(11t)=P(t,1)/P(t)=
0.1/0.5=0.2

The probability that a person is big, given that this person is tall, is 0.8



Conditional Probabilities P(H| W}

big P(s[b)=P(s,b}/P(b)= P(t|b)=P(t,b)/P(b)=
0.2/0.6=0.33 0.4/0.6=0.66

o ) Q

short tall
H

The probability that a person is tall, given that this person is big, is 0.66



e It follows: product rule
P(z,y) = P(z|y)P(y) = P(y|z)P(x)
e and chain rule

P(z1,...,x2p) = P(z1)P(xa|x1)P(x3|z1,22) ... P(zps|2, .- 2p0—1)
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Product Rule

big P(t,b)=P(b[t) P(t)=
0.8x0.5=0.4

o ) Q

short tall
H

The probability that a person is tall and that this person is big --- is the
same as the probability that a person is big, given that this person is tall,
times the probability that this person is tall



e Bayes Theorem

Pll) = 53

P(z,y) _ P(zly)P(y)

P(z)

P(x) >0
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Bayes Theorem

Je
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short

tall

P(t|b)=
P(b[t)P(t)/P(b)=
0.8x0.5/0.6=0.66

The probability that this person is tall, given that this person is big --- is the
same as the probability that someone is big given that this person is tall,
multiplied by the probability that this person is tall divided by the probability

that this person is big



e The marginal distribution can be calculated from a joint distribution as:

P(X=z)=) P(X=2Y =y)
Y
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Marginal Probability

Je

o (O
e

short tall
H
P(H=t) =0.5
P(t)= P(t, b) + P(t,]) = 0.4+0.1=0.5

The probability that a person is tall --- is the probability that someone is
tall and big plus the probability that someone is tall and light



e Example: ® = X VY A Z. What is P(® = true)?
e We can write the joint as: P(P, X,Y,Z) = P(®|X,Y,Z2)P(X,Y, Z)
e The marginal distribution can be calculated from a joint distribution as:

P(Pd = true) = Z P(® = true|x,y, z) P(x,y, z)

x?y?’z

S P(z,y.2)

x,y,z. P=true
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e We get for the disjunction
P(X=1VvY=1)=

P(X=1Y=04+P(X=0Y=1)4+P(X=1Y=1)=
(P(X=1,Y=04+PX=1Y=1)4+(P(X=0Y=1)+P(X=1,Y=1)
—P(X=1,Y=1)

=P(X=1)4+P¥Y=1)-PX=1Y=1)

e Only if states are mutually exclusive, P(X = 1,Y = 1) = O, then

P(X=1vY=1)=P(X=1)4+P(Y =1)
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Disjunction

(40)

g
o (G ®
7 d

short tall
H

P((H=t) OR (W=b}) =0.2+0.4+0.1=0.7  =P(t}+P(b)-P(t, b)= 0.5+0.6-0.4 = 0.7

The probability that a person is tall OR that a person is big--- is the probability that
someone is short and big plus the probability that someone is tall and big plus the
probability that someone is tall and light



e P(I,F,S) where I = 1 stands for influenza, F' = 1 stands for fever, S = 1

stands for sneezing

e What is the probability for influenza, when the patient is sneezing, but temperature is

unknown, P(I|S)?
e Thus | need (conditioning) P(I = 1|S=1)=P{U =1,S=1)/P(S=1)
e | calculate via marginalization

PI=1,8=1)=) PU=1,F=fS=1)
J

P(S=1)=>» P(I=i8=1)
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e Independence: two random variables are independent, if,
P(z,y) = P(z)P(ylz) = P(x)P(y)

e It follows for independent random variables,

P X=2VvVY=y)=PX=z)+P(Y =y) - P(X=x2)P(Y =vy)
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e Expected value

E(X)=Ep)(X) =) z;P(X =)
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Expected Value

Let’s associate with
tall 180cm, with
short 150cm, with
big 100kg, and with

light 50kg. W
o (0 ©
9
short tall

E(Height) = 0.5x180cm+0.5x150cm=165cm
E(Weight)=0.6x100kg+0.4x50kg= 80kg
We can also calculate E(Weight | H=t)= 0.8x100kg+0.2x50kg= 90kg



e [he Variance of a random variable is:

var(X) = Z(:vz — BE(X))?P(X = x;)

e The Standard Deviation is its square root:

stdev(X) = /Var(x)
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Variance

Let’s associate with
tall 180cm, with
short 150cm, with
big 100kg, and with
light 50kg.

®
9

short tall
H

Var(Height) = 0.5x(180cm-165cm )?+0.5x(150cm-165cm )°=400.50cm?  stdev(Height)=20.0cm
Var(Weight)=0.6x(100kg-80kg) *+0.4x(50kg-80kg) *= 600kg? stdev(Weight)=24.5kg

Var(Weight | H=t)= 0.8x(100kg-90kg)? +0.2x(50kg-90kg) < = 400kg * stdev(Weight |H=1)=20kg



e Covariance:

cov(X,Y) = ZZ(CBZ — E(X))(yj —E(Y)P(X =z;,Y = yj)
]

e Covariance matrix:

- - var(X) cov(X,Y)
(XYLIXY]T =\ cov(Y, X))  war(Y)
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Let’s associate with
tall 180cm, with
short 150cm, with
big 100kg, and with
light 50kg.

big

light

Covariance

)

short tall
H

Cov(Height, Weight) = 0.4(180-165)(100-80)+0.1(180-165)(50-80)

+0.2(150-165)(100-80)+0.3(150-165)(50-80) = 150



e Useful identity:
cov(X,Y) =FE(XY)—- E(X)E(Y)
where E(XY) is the correlation.
Correlation coefficient (confusing naming!) is

. cov(X,Y)
Vvar(X)\/var(Y)
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Correlation Coefficient

K

Let’s associate with
tall 180cm, with
short 150cm, with
big 100kg, and with
light 50kg.

®
9

short tall
H

r = Cov(Height, Weight)/(Stdev(Height)xStdev(Height))=150/(20x24.5)=0.3



e We have, independent of the correlation between X and Y/,

E(X+Y)=E(X)+ E(Y)
and thus also

E(X?+Y?) = E(X?) + E(Y?)
e For the sum of covariances,
var(X+Y) = E(X+Y —(E(X)+E(Y))) = E(X—E(X))+(Y —E(Y)))?
= E(X -EX)?)+E(Y -E(XY))?) —2E(X + E(X))(Y — E(Y))

= var(X) +var(Y) — 2cov(X,Y)

e If w is a random vector with covariance matrix cov(w) and y = Aw where A is a
fixed matrix. Then

cov(y) = Acov(w)AT

23



e Probability density

Ax—0 Ax

e Thus

b
Pla<x<b) = / f(x)dx

e [ he distribution function is

F(z) = /_ " f(2)dz = P(X < )
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e Expected value

E(X) = Ep(w)(X) = /xP(w)da:

e Variance

var(X) = / (z — E(2))?P(z)dx

e Covariance:

cov(X,Y) = //(ac — E(X))(y— EY))P(x,y)dzdy
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