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Elements in Learning Tasks

• Collection, cleaning and preprocessing of training data

• Definition of a class of learning models. Often defined by the free model parameters

in a learning model with a fixed structure (e.g., a Perceptron)

• Selection of a cost function which is a function of the data and the free parameters

(e.g., number of misclassifications in the training data as a function of the model

parameters)

• Optimizing the cost function via a learning rule to find the best model in the class of

learning models under consideration. Typically this means the learning of the optimal

parameters in a model with a fixed structure
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Prototypical Learning Task

• Classification of printed or handwritten digits

• Application: automatic reading of postal codes

• More general: OCR (optical character recognition)
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Transformation of the Raw Data (2-D) into Pattern Vectors
(1-D), which are then the Rows in a Learning Matrix
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Binary Classification for Digit “5”
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Data Matrix for Supervised Learning
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M number of inputs (input attributes)
N number of training patterns

xi = (xi,0, . . . , xi,M−1)
T

input for the i-th pattern
xi,j j-th component of xi
X = (x1, . . . ,xN)T

design matrix
yi target for the i-th pattern

y = (y1, . . . , yN)T

vector of targets
ŷi model prediction for xi
di = (xi,0, . . . , xi,M−1, yi)

T

i-th pattern
D = {d1, . . . ,dN}

training data

x = (x1, x2, . . . , xM−1)
T ,

generic (test) input
y unknown target for x
ŷ model estimate
fw(x) a model function with parameters w
f(x) the true function



Fine Details on the Notation

• x is a generic input and xj is its j-th component. y is a generic output

• xi is the i-th data point in the training data set and xi,j is its j-th component. yi is

the target associated with xi

• y is the vector of all targets

• Also note that xi is a column vector but it appears as a row in X
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Model
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A Biologically Motivated Model
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Examples of Input-Output Problems (Supervised Learning
Problems)

• A biological system needs to make a decision, based on available sensor information

• An OCR system classifies a hand written digit

• A prognostic system predicts tomorrow’s energy consumption
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Supervised Learning

• In supervised learning one assumes that in training both inputs and outputs are availa-

ble

• For example, an input pattern might reflect the attributes of an object and the target

is the class membership of that object

• The goal is the correct classification for new patterns (e.g., new objects)

• Linear classifier: one of the simplest but surprisingly powerful classifiers

• A linear classifier is particularly suitable, when the number of inputs M is large;

if M is not large, one can transform the input data into a high-dimensional space

(preprocessing), where a linear classifier might be able to solve the problem; this idea

is central to a large portion of the lecture (basis functions, neural networks, kernel

models)

• A linear classifier can be realized through a Perceptron, a single formalized neuron!
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The Perceptron: A Learning Machine

• The Perceptron was the first serious learning machine

• The Perceptron learning algorithm was invented in 1957 at the Cornell Aeronautical

Laboratory by Frank Rosenblatt
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The Perceptron: Input-Output
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• The activation function of the Percep-

tron is a sum of weighted inputs

h =
M−1∑
j=0

wjxj

(Note: x0 = 1 is a constant input, such

that w0 can be though of as a bias)

• The binary classification y ∈ {1,−1}
is calculated as

ŷ = sign(h)

• The linear classification boundary (sepa-

rating hyperplane) is defined by

h(x) = 0
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The Activation Function h (M = 3)
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The Decision Boundary (M = 3)
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Perceptron as a Weighted Voting Machine
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• The Perceptron is often displayed as a

graphical model with one input node for

each input variable and with one output

node for the target

• The bias w0 determines the class when

all inputs are zero

• Consider only binary inputs with xi,j ∈
{0,1}
• When xi,j = 1 the j-th input votes

with weight |wj| for class sign(wj)

• Thus, the response of the Perceptron can

be thought of as a weighted voting for a

class
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Perceptron Learning Rule

• We now need a learning rule to find optimal parameters w0, . . . , wM−1

• We define a cost function that is dependent on the training data and the parameters

• In the learning process (training), one attempts to find parameters that minimize the

cost function

17



The Perceptron Cost Function

• Goal: correct classification of the N training samples with targets {y1, . . . , yN}

• The Perceptron cost function is

cost = −
∑
i∈M

yihi =
N∑
i=1

|−yihi|+

where M ⊆ {1, . . . , N} is the index set of the currently misclassified patterns.

|arg|+ = max(arg,0).

• Obviously, we get cost = 0 only, when all patterns are correctly classified (then

M = ∅ ); otherwise cost > 0, since yi and hi have different signs for misclassified

patterns
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Contribution of one Data Point to the Cost Function
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Gradient Descent

• Initialize parameters (typically small random values)

• In each learning step, change the parameters such that the cost function decreases

• Gradient descent: adapt the parameters in the direction of the negative gradient

• The partial derivative of the weights with respect to the parameters is (Example: wj)

∂cost

∂wj
= −

∑
i∈M

yixi,j

• Thus, a sensible adaptation rule is, ∀wj,

wj ←− wj + η
∑
i∈M

yixi,j
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Gradient Descent with One Parameter
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Gradient Descent with Two Parameters
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The Perceptron Learning Rule

• In the actual Perceptron learning rule, one presents randomly selected currently misclas-

sified patterns and adapts with only the currently selected pattern. This is biologically

more plausible and also leads to faster convergence. Let xt and yt be the training

pattern in the t-th step. One adapts t = 1,2, . . .

wj ←− wj + ηytxt,j j = 1, . . . ,M

• A weight increases, when (postsynaptic) yt and (presynaptic) xt,j have the same sign;

different signs lead to a weight decrease (compare: Hebb Learning)

• η > 0 is the learning rate, typically 0 < η << 1

• Pattern-based learning is also called stochastic gradient descent (SGD)
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Stochastic Gradient Descent
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Comments

• Convergence proof: with sufficiently small learning rate η and when the problem is

linearly separable, the algorithm converges and terminates after a finite number of

steps

• If classes are not linearly separable and with finite η there is no convergence
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Example: Perceptron Learning Rule, η = 0.1
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Linearly Separable Classes
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Convergence and Non-uniqueness

Separating plane prior
to adaptation

Different planes after
the next adaptation
step, depending on
which pattern is
presented next and
the learning rate; both
correctly classify all
patterns
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Two Classes with Data Distributions that Cannot be Separated
with a Linear Classifier
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The Classical Example for Linearly Non-Separable Classes: XOR
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Learning Behavior for Nonseparable Classes

• The cost is minimum if as many data points as possible are correctly classified

• For the misclassified data points, |h| should be small; this is achieved with ‖w‖ → 0

which leads to instable learning behavior
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Perceptron as a Pattern Recognition System

• In vector notation (introduced in a following lecture), the geometric relationships can

easily be describes

• Let, x = (x0, x1, . . . , xM−1)
T , w = (w0, w1, . . . , wM−1)

T

• Let, x̃ = (x1, . . . , xM−1)
T , w̃ = (w1, . . . , wM−1)

T (same, but without the

first dimension)

• When the length is fixed, an input vector x̃ in the direction w̃ has the largest activation

• The distance between the separating hyperplane and the origin is |w0|/‖w̃‖
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Geometric Relationships
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Comments on the Perceptron

• With separable classes, convergence can be very fast

• A linear classifiers is a very important basic building block: with M → ∞ most

problems become linearly separable!

• In some case, the data are already high-dimensional with M > 10000 (e.g., number

of possible key words in a text)

• In other cases, one first transforms the input data into a high-dimensional (sometimes

even infinite) space and applies the linear classifier in that space: basis functions, kernel

trick, Neural Networks

• Considering the power of a single formalized neuron: how much computational power

might 100 billion neurons possess?

• Are there grandmother cells in the brain? Or grandmother areas?
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Comments on the Perceptron (cont’d)

• The Perceptron learning rule is not much used any more

– No convergence, when classes are not separable

– Classification boundary is not unique, even in the case of separable classes

• Alternative learning rules:

– Optimal separating hyperplanes (Linear Support Vector Machine)

– Fisher Linear Discriminant

– Logistic Regression
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Application for a Linear Classifier; Analysis of fMRI Brain Scans
(Tom Mitchel et al., CMU)

• Goal: based on the fMRI image slices, determine if someone thinks of tools, buildings,

food, or a large set of other semantic concepts

• The trained linear classifier is 90% correct and can, e.g., predict if someone reads

about tools or buildings

• The figure shows the voxels, which are most important for the classification task. All

three test persons display similar regions
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Pattern Recognition Paradigm

• von Neumann: ... the brain uses a peculiar statistical language unlike that employed

in the operation of man-made computers...

• A classification decision is done by considering the complete input pattern, and NOT

as a logical decision based on a small number of attributes nor as a complex logical

programm

• The linearly weighted sum corresponds more to a voting: each input has either a

positive or a negative influence on the classification decision

• Robustness: in high dimensions, a single —possible incorrect— input has little influence
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Epilog
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Why Pattern Recognition?

• Alternative approach to pattern recognition: learning of simple close-to deterministic

rules (naive expectation)

• One of the big mysteries in machine learning is why rule learning is not very successful

in predictive systems, although they might be useful to gain a degree of insight in a

domain

• Problems: the learned rules are often either trivial, known, or extremely complex and

very difficult to interpret

• This is in contrast to the general impression that the world is governed by simple rules

• Also: computer programs, machines ... follow simple deterministic rules? How else

should one drive a car?
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Example: Birds Fly

• Define flying: using its own force, a distance of at least 20m, at leat 1m high, at least

once every day in its adult life, ...

• A bird can fly if,

– it is not a penguin, or ....

– it is not seriously injured or dead

– it is not too old

– the wings have not been clipped

– it does not have a number of diseases

– it only lives in a cage

– it does not carry heavy weights

– ...
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Pattern Recognition

• 90% of all birds fly

• Of all birds which do not belong to a flightless class 94% fly

• ... and which are not domesticated 96% ...

• Basic problem:

– Complexity of the underlying (deterministic) system

– Incomplete information

• Thus: success of statistical machine learning!
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Example: Predicting Buying Pattern
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Conclusion

• One reason, why dependencies tend to be high-dimensional and statistical in nature is

that the input of interest, here income, is not available (latent, hidden); latent variable

models attempt to estimate these latent factors (see lecture on PCA); note, that also

the target “buying interest” is often latent (unless, e.g., asked for in a questionnaire)

• Another reason is that many individual factors contribute to a decision: as discussed,

the Perceptron can be thought of as a weighted voting machine

• Exceptions (where rule-learning might works as predictive systems):

– Technical human generated worlds (“Engine A always goes with transmission B”)

– Tax forms (although for a“just”fined-tuned tax system, the rules become complex

again); legal system; business rules (again: human generated)

– Natural laws under idealized conditions; under real conditions (friction, wind, ...)

laws become complex again; rules in chemistry; weather forecasting is done with

stochastic natural laws, but can also be done via purely statistical methods
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• Also language seems to happen more on the deterministic level; although language is

often used to justify a decision, and not to explain a decision. In making a decision

(vacationing in Italy), many issues are considered; after the decision, the result is often

communicated as a simple rule:“We will go to Italy, because it has the best beaches!”


