
Neural Networks

Volker Tresp

Summer 2016

1

Introduction

• The performance of a classifier or a regression model critically depends on the choice

of appropriate basis functions

• The problem with generic basis functions such as polynomials or RBFs is, that the

number of basis functions required for a good approximation increases rapidly with

dimensions (“curse of dimensionality”)

• It should be possible to “learn” the appropriate basis functions

• This is the basic idea behind Neural Networks

• Neural Networks use particular forms of basis functions: sigmoidal (neural) basis func-

tions (or similar ones)

• Neural Networks scale well with input dimensions

2

Neural Networks: Essential Advantages

• Neural Networks are universal approximators: any continuous function can be appro-

ximated arbitrarily well (with a sufficient number of neural basis functions)

• Naturally, they can solve the XOR problem and at the time (mid 1980’s) were consi-

dered the response to the criticism by Minsky and Papert with respect to the limited

power of the single Perceptron

• Important advantage of Neural Networks: a good function fit can often (for a large

class of important function classes) be achieved with a small number of neural basis

functions

• Neural Networks scale well with input dimensions

3

Flexible Models: Neural Networks

• As before, the output of a neural network (respectively the activation function h(x),

in the case of a linear classifier) is the weighted sum of basis functions

ŷ = fw,V (x) =
H−1∑
h=0

whsig(xTvh)

• Note, that in addition to the output weights w the neural network also has inner

weights vh

4

Neural Basis Functions

• Special form of the basis functions

zh = sig(xTvh) = sig

M−1∑
j=0

vh,jxj


using the logistic function

sig(arg) =
1

1+ exp(−arg)

• Adaption of the inner parameters vh,j of the basis functions!

5

Hard and Soft (sigmoid) Transfer Functions

• First, the activation function of the neu-

rons in the hidden layer are calculated as

the weighted sum of the inputs xi as

h(x) =
M−1∑
j=0

wjxj

(note: x0 = 1 is a constant input, so

that w0 corresponds to the bias)

• The sigmoid neuron has a soft (sigmoid)

transfer function

Perceptron : ŷ = sign(h(x))

Sigmoidal neuron: ŷ = sig(h(x))

6

Transfer Function

7

Separating Hyperplane

• Definition of the hyperplane

sig

M−1∑
j=0

vh,jxj

 = 0.5

which means that:

M−1∑
j=0

vh,jxj = 0

• “carpet over a step”

8

Architecture of a Neural Network

9

Variants

• For a neural network classifier (binary) apply the sigmoid transfer function to the

output neuron, and calculate

ŷ = sig(fw,V (x)) = sig(zTw)

• For multi class tasks, one uses several output neurons. For example, to classify K

digits

ŷk = sig(fk,wk,V (x)) = sig(zTwk) k = 1,2, . . . ,K

and one decides for class l, with l = argmaxk(ŷk)

• A Neural Network with at least one hidden layer is called a Multi Layer Perceptron

(MLP)

10

Architecture of a Neural Network for Several Classes

11

Learning with Several Outputs

• The goal again is the minimization of the squared error calculated over all training

patterns and all outputs

cost(W,V) =
N∑
i=1

cost(xi,W, V)

with cost(xi,W, V) =
∑K
k=1(yi,k − sig(fk,wk,V (xi))

2

• The least squares solution for V cannot be calculated in closed-form

• Typically both W and V are trained via (stochastic) gradient descent

12

Adaption of the Output Weights

• The gradient of the cost function for an output weight for pattern i becomes

∂cost(xi,W, V)

∂wk,h
= −2δi,kzi,h

where

δi,k = sig′(zTi wk)(yi,k − sig(fk,wk,V
(xi))))

is the back propagated error signal (error back propagation).

• The pattern based gradient descent learning becomes (pattern: i, output: k, hidden:

h):

wk,h ← wk,h+ ηδi,kzi,h

13

The Derivative of the Sigmoid Transfer Function with Respect
to the Argument

... can be written elegantly as

sig′(in) =
exp(−in)

(1 + exp(−in))2
= sig(in)(1− sig(in))

Thus

δi,k = ŷi,k(1− ŷi,k)(yi,k − ŷi,k)

14

Adaption of the Input Weights

• The gradient of an input weight with respect to the cost function for pattern i becomes

∂cost(xi,W, V)

∂vh,j
= −2δi,hxi,j

with the back propagated error

δi,h = sig′(xTi vh)
K∑
k=1

wk,hδi,k

• For the pattern based gradient descent, we get (pattern: i, hidden: h, input: j):

vh,j ← vh,j + ηδi,hxi,j

15

Pattern-based Learning

• Iterate over all training patterns

• Let xi be the training data point at iteration t

– Apply xi and calculate zi,yi (forward propagation)

– Via error backpropagation calculate the δi,h, δi,k

– Adapt

wk,h ← wk,h+ ηδi,kzi,h

vh,j ← vh,j + ηδi,hxi,j

• All operations are “local”: biological plausible

16

Neural Networks and Overfitting

• In comparison to conventional statistical models, a Neural Network has a huge number

of free parameters, which might easily lead to over fitting

• The two most common ways to fight over fitting are regularization and stopped-

training

• Let’s first discuss regularization

17

Neural Networks: Regularisation

• We introduce regularization terms and get

costpen(W,V) =
N∑
i=1

cost(xi,W, V) + λ1

H−1∑
h=1

w2
h + λ2

H−1∑
h=1

M∑
j=0

v2h,j

• The learning rules change to (with weight decay term, the constant bias is typically

not regularized)

wk,h ← wk,h+ η
(
δi,kzi,h − λ1wk,h

)
vh,j ← vh,j + η

(
δi,hxi,j − λ2vh,j

)

18

Artificial Example

• Data for two classes (red/green circles) are generated

• Classes overlap

• The optimal separating boundary is shown dashed

• A neural network without regularization shows over fitting (continuous line)

19

Same Example with Regularization

• With regularization (λ1 = λ2 = 0.2) the separating plane is closer to the true class

boundaries

• The training error is smaller with the unregularized network, the test error is smaller

with the regularized network

20

Optimized Regularization Parameters

• The regularization parameter is varied between 0 and 0.15

• The vertical axis shows the test error for many independent experiments

• The best test error is achieved with regularization parameter 0.07

• The variation in the test error decreases with increasing regularization parameter

21

Variations

• Use more than one hidden layer (see deep learning)

• Use tanh(arg) ∈ (−1,1) instead of sig(arg) ∈ (0,1)

• For the tanh(arg), use targets y ∈ {−1,1}, instead of y ∈ {0,1}

• Instead of the sum-squared-error cost function, use the cross-entropy cost function
(logistic cost function) with yk ∈ {0,1}

cost(W,V) =
N∑
i=1

cost(xi,W, V)

with

cost(xi,W, V) =
K∑
k=1

−yi,k log ŷi,k − (1− yi,k) log(1− ŷi,k)

∂cost(xi,W, V)

∂wk,h
= −2δi,kzi,h

22

with

δi,k = (yi,k − ŷi,k)

(Derivation of this equation in the lecture on linear classifiers)

• Compare with the squared loss:

δi,k = ŷi,k(1− ŷi,k)(yi,k − ŷi,k)

Thus with cross-entropy, the gradient does not become zero of the prediction comple-

tely agrees or disagrees with the target

Regularization with Stopped-Training

• In the next picture you can see typical behavior of training error and test error as a

function of training iterations

• As expected the training error steadily decreases with the training time

• As expected, the test error first decreases as well; maybe surprisingly there is a mini-

mum after which the test error increases

• Explanation: During training, the degrees of freedom in the neural network slowly

increase; with too many degrees of freedom, overfitting occurs

• It is possible to regularize a neural network by simply stopping the adaptation at the

right moment (regularization by stopped-Training)

23

Optimizing the Learning Rate η

• Convergence can be influenced by the learning rate η

• Next figure: if the learning rate is too small, convergence can be vary slow, if too large

the iterations can oscillate and even diverge

• The learning rate can be adapted to the learning process (“Adaptive Learning Rate

Control”)

24

Local Solutions

25

Local Solutions

26

SGD has Fewer Problems with Local Optima

27

Dealing with Local Optima

• Restart: Simply repeat training with different initial values and take the best one

• Committee: Repeat training with different initial values and take all of them: for

regression, simply average the responses, for classification, take the majority vote

28

Bagging

• Bagging: Bootstrap AGGregatING

• Committee as before, but each neural network is trained on a different bootstrap

sample of the training data

• Bootstrap sample: From N training data, randomly select N data points with repla-

cement. This means one generates a new training data set with again N data points

but where some data points of the original set occur more than once and some not at

all

• If you apply this committee idea to decision trees you get Random Forests (wins many

Kaggle competitions; now deep neural networks seem to work better)

29

Conclusion

• Neural Networks are very powerful and show excellent performance

• Training can be complex and slow, but one might say with some justification, that a

neural network really learns something: the optimal representation of the data in the

hidden layer

• Predictions are fast!

• Neural Networks are universal approximators and have excellent approximation pro-

perties

• Disadvantage: training a neural network is something of an art; a number of hyper

parameters have to be tuned (number of hidden neurons, learning rate, regularization

parameters, ...)

• Not all problems can be formulated as a neural network learning problem (but surpri-

singly many real world problems)

30

• Disadvantage: A trained neural network finds a local optimum. The solution is not

unique, e.g. depends on the initialization of the parameters. Solutions: multiple runs,

committee machines

• Note added in 2016; You are so lucky to live today. If you use Theano or similar

computation libraries (TensorFlow, Keras), you never have to program

backprop since these tools use symbolic differentiation

Modelling of Time Series

• The next figure shows a tim series (DAX)

• Other interesting time-series: energy prize, energy consumption, gas consumption,

copper prize, ...

31

Neural Networks for Time-Series Modelling

• Let zt, t = 1,2, . . . be the time-discrete time-series of interest (example: DAX)

• Let xt, t = 1,2, . . . denote a second time-series, that contains information on zt
(Example: Dow Jones)

• For simplicity, we assume that both zt and xt are scalar. The goal is the prediction of

the next value of the time-series

• We assume a system of the form

zt = f(zt−1, . . . , zt−T , xt−1, . . . , xt−T) + εt

with i.i.d. random numbers εt, t = 1,2, . . . which model unknown disturbances.

32

Neural Networks for Time-Series Modelling (cont’d)

• We approximate, using a neural network,

f(zt−1, . . . , zt−T , xt−1, . . . , xt−T)

≈ fw,V (zt−1, . . . , zt−T , xt−1, . . . , xt−T)

and obtain the cost function

cost(w, V) =
N∑
t=1

(zt − fw,V (zt−1, . . . , zt−T , xt−1, . . . , xt−T))2

• The neural network can be trained as before with simple back propagation if in training

all zt and all xt are known!

• This is a NARX model: Nonlinear Auto Regressive Model with external inputs. Ano-

ther name: TDNN (time-delay neural network)

33

Recurrent Neural Network

• If zt cannot be measure directly (e.g., if there is noise on the measurements) we can

model

zt = f(zt−1, . . . , zt−T , xt−1, . . . , xt−T) + εt

yt = zt+ δt

• Only the yt are measured

• Now the inputs to the neural network are not really known in training (they are hidden,

latent) and an estimate ŷt is influenced by measurements xt from far in the past

• Recurrent Neural Network: in prediction the neural network uses its own past predic-

tions as inputs

34

Generic Recurrent Neural Network Architecture

• Consider a feedforward neural network where there are connections between the hidden

units

zt,h = sig(zTt−1ah+ xTt vh)

and, as before,

ŷt = sig(zTt w)

• Here, zt = (zt,1, zt,2, . . . , zt,H)T , xt = (xt,0, xt,1, . . . , xt,M−1)
T

• In Recurrent Neural Networks (RNNs) the next state of the neurons in the hidden

layer depends on their last state and both are not directly measured

• ah,w,vh are weight vectors

• The next figure shows an example. Only some of the recurrent connections are shown

(blue). The blue and red connection also model a time lag. Without recurrent connec-

tions (ah = 0, ∀h) and without time lag, we obtain a regular feedforward network

35

• Note, that a recurrent neural network has an internal memory

A Recurrent Neural Network Architecture unfolded in Time

• The same RNN but with a different intuition

• Consider that at each time-step a feedforward Neural Network predicts outputs based

on some inputs

• In addition, the hidden layer also receives input from the hidden layer of the previous

time step

• Without the nonlinearities in the transfer functions, this is a linear state-space model;

thus a RNN is a nonlinear state-space model

36

Training of Recurrent Neural Network Architecture

• Backpropagation through time (BPTT): essentially backpropagation applied to the

unfolded network; note that all that happened before time t influences ŷt, so the error

needs to be backpropagated backwards in time, in principle until the beginning of

the experiment! In reality, one typically truncates the gradient calculation (review in:

Werbos (1990))

• Real-Time Recurrent Learning (RTRL) (Williams and Zipser (1989))

• Time-Dependent Recurrent Back-Propagation: learning with continuous time (Lag-

rangian approach) (Pearlmutter 1998)

37

Echo-State Network

• Recurrent Neural Networks are notoriously difficult to train

• A simple alternative is to initialize A and V randomly (according to some recipe) and

only train w, e.g., with the ADALINE learning rule

• This works surprisingly well and is done in the Echo-State Network (ESN)

38

Long Short Term Memory (LSTM)

• As a recurrent structure the Long Short Term Memory (LSTM) approach has been

very successful

• Basic idea: at time T a newspaper announces that the Siemens stock is labelled as

“buy”. This information will influence the development of the stock in the next days.

A standard RNN will not remember this information for very long. One solution is to

define an extra input to represent that fact and that is on as along as“buy”is valid. But

this is handcrafted and does not exploit the flexibility of the RNN. A flexible construct

which can hold the information is a long short term memory (LSTM) block.

• The LSTM was used very successful for reading handwritten text and is the basis for

many applications involving sequential data (NLP, translation of text, ...)

39

LSTM in Detail

• Recall the hidden unit of an RNN was calculated as (note that we use i instead of z)

it,h = sig(zTt−1ah+ xTt vh)

• Then

ct,h = βt,h ct−1,h+ αt,h it,h

and the new output of hidden LSTM neuron is

zt,h = γt,h tanh
(
ct,h
)

• The gates α, β, γ are

αt,h = tanh(zTt−1a
α
h + xTt v

α
h)

βt,h = sig(zTt−1a
β
h + xTt v

β
h)

γt,h = sig(zTt−1a
γ
h+ xTt v

γ
h)

40

• An RNN typically has several hidden LSTM neurons

• See http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-

a-grulstm-rnn-with-python-and-theano/

“Understanding” LSTM

• Recall the hidden unit of an RNN was calculated as

zt,h = sig(zTt−1ah+ xTt vh)

• Let’s rename zt,h → ct,h

ct,h = sig(cTt−1ah+ xTt vh)

• We want the latent neurons to act more like an integrator (so technically, the sigmoid

is replaced by something more complex)

ct,h = ct−1,h+ sig(cTt−1ah+ xTt vh)

• Let’s add gates

ct,h = βt,h ct−1,h+ αt,h sig(cTt−1ah+ xTt vh)

• Let’s add another transformation zt,h = γt,h tanh
(
ct,h
)

ct,h = βt,h ct−1,h+ αt,h sig(zTt−1ah+ xTt vh)

41

• Let zt,h be the output of the neuron in the recurrent neural network!

• Amazing fact: How can you can up with this (Sepp Hochreiter and Jürgen Schmidhuber

(1997))

• Even more amazing: it works!

• Wiki: LSTM achieved the best known results in unsegmented connected handwriting

recognition,[3] and in 2009 won the ICDAR handwriting competition. LSTM networks

have also been used for automatic speech recognition, and were a major component

of a network that in 2013 achieved a record 17.7% phoneme error rate on the classic

TIMIT natural speech dataset

• Applications: Robot control, Time series prediction, Speech recognition, Rhythm lear-

ning, Music composition, Grammar learning, Handwriting recognition, Human action

recognition, Protein Homology Detection

Gated Recurrent Units (GRUs)

• Some people found LSTMs too complicated and invented GRUs

• First, we do not need c and γ. α and β as before,

zt,h = βt,h zt−1,h+ (1− βt,h) tanh(mT
t−1ah+ xTt vh)

mt−1 = zt−1 ◦ ~αt

where ◦ is the elementwise product

42

APPENDIX: Approximation Accuracy of Neural Networks

43

Vector Space View

• In the discussion on fixed basis functions, we learned that a basis function is a fixed

vector in a vector space and that the model function lives in the vector space spanned

by the basis functions

• In a neural network the vector space itself can be adapted by tuning the inner weights

in the neural network!

• Thus many vector spaces can be modelled by the same neural network leading to great

modelling flexibility with fewer parameters

• Considering all parameters in the neural network, the functions that can be represented

live in a nonlinear manifold

45

Example of a Nonlinear Manifold (not generated by a neural
network)

46

Complexity Measure

• How many hidden neurons are required for a certain approximation accuracy?

• Define the complexity measure Cf as∫
<d
|ω||f̃(ω)| dω = Cf ,

where f̃(ω) is the Fourier transform of f(x). Cf penalizes (assigns a high value to)

functions with high frequency components!

• The task is to approximate f(x) with a given Cf with a model fw(x)

• The input vector is x ∈ <M , the neural network has H hidden units

• The approximation error AF is the mean squared distance between a target function

f(x) and the model fw(x)

AF =

∫
Br

(f(x)− fw(x))2µ(dx). (1)

µ is an arbitrary probability distribution on the sphere Br = {x : |x| ≤ r} with

radius r > 0

• Barron showed that for each f(x), for which Cf is finite there is a neural network

with one hidden layer, such that AFNeur

AFNeur ≤
(2rCf)

2

H
. (2)

• Thus for a good approximation, we might need many hidden units H, but the bound

does NOT contain the number of inputs M !

• Note that for approximations with fixed basis functions, one obtains

AFBF ∝
1

H

2
M

=

(
M
√
M2
φ

)−1
With AFBF = 10−1, we get with this approximation

H = 10M/2

and be see the exponential increase of the required basis functions with input dimen-

sions M (“curse of dimensionality”)

• For important function classes it could be shown that Cf only increases weakly (e.g.,

proportional) with M

• Quellen: Tresp, V. (1995). Die besonderen Eigenschaften Neuraler Netze bei der Ap-

proximation von Funktionen. Künstliche Intelligenz, Nr. 4.

A. Barron. Universal Approximation Bounds for Superpositions of a Sigmoidal Func-

tion. IEEE Trans. Information Theory, Vol. 39, Nr. 3, 1993.

