
Linear Classification

Volker Tresp
Summer 2016

1



Classification

• Classification is the central task of pattern recognition

• Sensors supply information about an object: to which class do the object belong (dog,

cat, ...)?
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Linear Classifiers

• Linear classifiers separate classes by a linear hyperplane

• In high dimensions a linear classifier often can separate the classes

• Linear classifiers cannot solve the exclusive-or problem

• In combination with basis functions, kernels or a neural network, linear classifiers can

form nonlinear class boundaries
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Hard and Soft (sigmoid) Transfer Functions

• First, the activation function of the neu-

rons in the hidden layer are calculated as

the weighted sum of the inputs xi as

h(x) =
M−1∑
j=0

wjxj

(note: x0 = 1 is a constant input, so

that w0 corresponds to the bias)

• The sigmoid neuron has a soft (sigmoid)

transfer function

Perceptron : ŷ = sign(h(x))

Sigmoidal neuron: ŷ = sig(h(x))
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Binary Classification Problems

• We will focus first on binary classification where the task is to assign binary class labels

yi = 1 and yi = 0 (or yi = 1 and yi = −1 )

• We already know the Perceptron. Now we learn about additional approaches

– I. Generative models for classification

– II. Logistic regression

– III. Classification via regression
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Two Linearly Separable Classes
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Two Classes that Cannot be Separated Linearly
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The Classical Example not two Classes that cannot be
Separated Linearly: XOR
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Separability is not a Goal in Itself. With Overlapping Classes
the Goal is the Best Possible Hyperplane
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I. Generative Model for Classification

• In a generative model one assumes a probabilistic data generating process (likelihood
model). Often generative models are complex and contain unobserved (latent, hidden)
variables

• Here we consider a simple example: how data are generated in a binary classification
problem

• First we have a model how classes are generated P (y). y = 1 could stand for a
good customer and y = 0 could stand for a bad customer.

• Then we have a model how attributes are generated, given the classes P (x|y). This
could stand for

– Income, age, occupation (x) given a customer is a good customer (y = 1)

– Income, age, occupation (x) given a customer is not a good customer (y = 0)

• Using Bayes formula, we then derive P (y|x): the probability that a given customer is
a good customer y = 1 or bad customer y = 0, given that we know the customer’s
income, age and occupation
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How is Data Generated?

• We assume that the observed classes yi are generated with probability

P (yi = 1) = κ1 P (yi = 0) = κ0 = 1− κ1

with 0 ≤ κ1 ≤ 1.

• In a next step, a data point xi has been generated from P (xi|yi)

• (Note, that xi = (xi,1, . . . , xi,M)T , which means that xi does not contain the

bias xi,0)

• We now have a complete model: P (yi)P (xi|yi)
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Bayes’ Theorem

• To classify a data point xi, i.e. to determine the yi, we apply Bayes theorem and get

P (yi|xi) =
P (xi|yi)P (yi)

P (xi)

P (xi) = P (xi|yi = 1)P (yi = 1) + P (xi|yi = 0)P (yi = 0)
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ML Estimate for Class Probabilities

• Maximum-likelihood estimator for the prior class probabilities are

P̂ (yi = 1) = κ̂1 = N1/N

and

P̂ (yi = 0) = κ̂0 = N0/N = 1− κ̂1

where N1 and N0 is the number of training data points for class 1, respectively class

0

• Thus the class probabilities simply reflect the class mix
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Class-specific Distributions

• To model P (xi|yi) one can chose an application specific distribution

• A popular choice is a Gaussian distribution

P (xi|yi = l) = N (xi; ~µ
(l),Σ)

with

N
(
xi; ~µ

(l),Σ
)

=
1

(2π)M/2
√
|Σ|

exp

(
−

1

2

(
xi − ~µ(l)

)T
Σ−1

(
xi − ~µ(l)

))
• Note, that both Gaussian distributions have different modes (centers) but the same

covariance matrices. This has been shown to often work well
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Maximum-likelihood Estimators for Modes and Covariances

• One obtains a maximum likelihood estimators for the modes

~̂µ
(l)

=
1

Nl

∑
i:yi=l

xi

• One obtains as unbiased estimators for the covariance matrix

Σ̂ =
1

N −M

1∑
l=0

∑
i:yi=l

(xi − ~̂µ
(l)

)(xi − ~̂µ
(l)

)T
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Expanding the Quadratic Terms in the Exponent

• Note that (
xi − ~µ(l)

)T
Σ−1

(
xi − ~µ(l)

)
= xTi Σ−1xi − 2 ~µ(l)T Σ−1xi + ~µ(l)T Σ−1~µ(l)

• ... and ...(
xi − ~µ(0)

)T
Σ−1

(
xi − ~µ(0)

)
−
(
xi − ~µ(1)

)T
Σ−1

(
xi − ~µ(1)

)
= 2

(
~µ(0) − ~µ(l)

)T
Σ−1xi + ~µ(0)T Σ−1~µ(0) − ~µ(1)T Σ−1~µ(1)
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A Posteriori Distribution

• It follows that

P (yi = 1|xi) =
P (xi|yi = 1)P (yi = 1)

P (xi|yi = 1)P (yi = 1) + P (xi|yi = 0)P (yi = 0)

=
1

1 + P (xi|yi=0)P (yi=0)
P (xi|yi=1)P (yi=1)

=
1

1 + κ0
κ1

exp
(

(~µ(0) − ~µ(1))TΣ−1xi + 1
2 ~µ

(0)T Σ−1~µ(0) − 1
2 ~µ

(1)T Σ−1~µ(1)
)

= sig
(
w0 + xTi w

)
= sig

w0 +
M∑
j

xi,jwj



w = Σ−1
(
~µ(1) − ~µ(0)

)
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w0 = logκ1/κ0 −
1

2
~µ(0)T Σ−1~µ(0) +

1

2
~µ(1)T Σ−1~µ(1)

• Recall: sig(arg) = 1/(1 + exp(−arg))



Comments

• This specific generative model leads to linear class boundaries

• But we do not only get class boundaries, we get probabilities

• (Comment: The solution is analogue to Fisher’s linear discriminant analysis (LDA),

where one projects the data into a space in which data from the same class have small

variance and where the distance between class modes are maximized. In other words,

one gets the same results from an optimization criterion without assuming Gaussian

distributions)

• Although we have used Bayes formula, the analysis was frequentist. A Bayesian analysis

with a prior distribution on the parameters is also possible

• If the two class-specific Gaussians have different covariance matrices (Σ(0),Σ(1))

the approach is still feasible but one would need to estimate two covariance matrices

and the decision boundaries are not linear anymore
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Special Case: Naive Bayes

• With diagonal covariances matrices, one obtains a Naive-Bayes classifier

P (xi|yi = l) =
M∏
j=1

N (xi,j; ~µ
(l)
j , σ2

j )

• The naive Bayes classifier has considerable fewer parameters but completely ignores

class-specific correlations between features; this is sometimes considered to be naive

• Even more naive:

P (xi|yi = l) =
M∏
j=1

N (xi,j; ~µ
(l)
j ,1)

and then

w = ~µ(1) − ~µ(0)

w0 = logκ1/κ0 −
1

2
~µ(0)T ~µ(0) +

1

2
~µ(1)T ~µ(1)
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Special Case: Bernoulli Naive Bayes

• Naive Bayes classifiers are popular in text analysis with often more than 10000 features

(key words). For example, the classes might be SPAM and no-SPAM and the features

are keywords in the texts

• Instead of a Gaussian distribution, a Bernoulli distribution is employed

• P (wordj = 1|SPAM) = γj,s is the probability of observing word wordj in the

document for SPAM documents

• P (wordj = 0|SPAM) = 1 − γj,s is the probability of not observing word wordj
in the document for SPAM documents

• P (wordj = 1|no-SPAM) = γj,n is the probability of observing word wordj in the

document for non-SPAM documents

• P (wordj = 0|no-SPAM) = 1−γj,n is the probability of not observing word wordj
in the document for non-SPAM documents
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• Then

P (SPAM|doc) ∝ κs
∏
j

γ
wordj
j,s (1− γj,s)1−wordj

P (no-SPAM|doc) ∝ κn
∏
j

γ
wordj
j,n (1− γj,n)1−wordj

• Simple ML estimates are γj,s = Nj,s/Ns and γj,n = Nj,n/Nn

(Ns is the number of SPAM documents in the training set, Nj,s is the number of

SPAM documents in the training set where wordj is present)

(Nn is the number of no-SPAM documents in the training set, Nj.n is the number

of no-SPAM documents in the training set where wordj is present)



II. Logistic Regression

• The generative model motivates

P (yi = 1|xi) = sig
(
xTi w

)
(now we include the bias xTi = (xi,0 = i,1, xi,1, . . . , xi,M−1)T ). sig() as

defined before (logistic funktion).

• One now optimizes the likelihood of the conditional model

L(w) =
N∏
i=1

sig
(
xTi w

)yi (
1− sig

(
xTi w

))1−yi
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Log-Likelihood

• Log-likelihood function

l =
N∑
i=1

yi log
(

sig
(
xTi w

))
+ (1− yi) log

(
1− sig

(
xTi w

))

l =
N∑
i=1

yi log

(
1

1 + exp(−xTi w)

)
+ (1− yi) log

(
1

1 + exp(xTi w)

)

= −
N∑
i=1

yi log(1 + exp(−xTi w)) + (1− yi) log(1 + exp(xTi w))
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Adaption

• The derivatives of the log-likelihood with respect to the parameters

∂l

∂w
=

N∑
i=1

yi
xi exp(−xTi w)

1 + exp(−xTi w)
− (1− yi)

xi exp(xTi w)

1 + exp(xTi w)

=
N∑
i=1

yixi(1− sig(xTi w))− (1− yi)xisig(xTi w)

=
N∑
i=1

(yi − sig(xTi w))xi

• A gradient-based optimization of the parameters to maximize the log-likelihood

w←− w + η
∂l

∂w

• Typically one uses a Newton-Raphson optimization procedure
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Cross-entropy Cost Function

• In information theory, the cross entropy between a true distribution P and an appro-
ximative distribution Q is defined as H(P,Q) = −

∑
x P (X = x) logQ(X =

x). (in information theory, it represents the number of bits if the encoding uses Q(x)
whereas the true distribution is P (x). It is greater of equal the entropy of P (x))

• We apply the cross entropy to the conditional distributions P (Y |X), Q(Y |X) and
we assume that P (Y |X) is represented by the data and Q(Y |X) represents the
model we get H(P,Q) = −

∑
i logQ(xi). Thus the cross entropy is identical to

the negative log-likelihood

• The log-likelihood cost function is identical to the cross entropy cost function
and is written for yi ∈ {0,1}

cost = −
N∑
i=1

yi log(sig(xTi w))− (1− yi) log(1− sig(xTi w)))

=
N∑
i=1

yi log(1 + exp(−xTi w)) + (1− yi) log(1 + exp(xTi w))
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=
N∑
i=1

log
(

1 + exp
(

(1− 2yi)x
T
i w
))

• ... and for yi ∈ {−1,1}

cost =
N∑
i=1

log
(

1 + exp
(
−yixTi w

))



Logistic Regression in Medical Statistics

• Logistic regression has become one of the the most important tools in medicine to

analyse the outcome of treatments

• y = 1 means that the patient has the disease. x1 = 1 might represent the fact that

the patient was exposed (e.g., by a genetic variant) and x1 = 0 might mean that

the patient was not exposed. The other inputs are often typical confounders (age, sex,

...)

• Logistic regression then permits the prediction of the outcome for any patient

• Of course, of great interest is if w1 is significantly positive (i.e., the exposure was

harmful)
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Log-Odds

• The logarithm of the odds is defined as

log(Odds(xi)) = log
P (yi = 1|xi)
P (yi = 0|xi)

• For logistic regression,

log(Odds(xi)) = log
P (yi = 1|xi)
P (yi = 0|xi)

= log
1

1 + exp(−xTi w)

1 + exp(−xTi w)

exp(−xTi w)

= log
1

exp(−xTi w)
= xTi w
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Log Odds Ratio

• The log odds ratio evaluates the effect of the treatment (valid for any patient)

w1 = log(Odds(x1 = 1))− log(Odds(x1 = 0)) = log
Odds(x1 = 1)

Odds(x1 = 0)

• This is the logarithm of the so called odds ratio (OR). If w1 ≈ 0, then the exposure
does not have an effect: the odds ratio is commonly used in case-control studies!

• What we have calculated is the log-odds for a patient with properties xi to get the
disease

• We get a nice interpretation of the parameters in logistic regression: w0 is the log
odds of getting the disease, when the patient does not get the treatment (and all other
inputs are zero). This is the only term that changes, when the class mix is changed

• w1 is the log odds ratio associated with the treatment. This is independent of the
class mix or of other input factors (thus we cannot model interactions)

• w2, . . . , wM−1 models the log odds ratio associated with confounders (age, sex, ...)
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Logistic Regression as a Generalized Linear Models (GLM)

• Consider a Bernoulli distribution with P (y = 1) = θ and P (y = 0) = 1 − θ,

with 0 ≤ θ ≤ 1

• In the theory of the exponential family of distributions, one sets θ = sig(η). Now

we get valid probabilities for any η ∈ R!

• η is called the natural parameter and sig(·) the inverse parameter mapping for the

Bernoulli distribution

• This is convenient if we make η a linear function of the inputs and one obtains a

Generalized Linear Model (GLM)

P (yi = 1|xi,w) = sig(xTi w)

• Thus logistic regression is the GLM for the Bernoulli likelihood model
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Application to Neural Networks and other Systems

• Logistic regression essentially defines a new cost function

• It can be applied as well to neural networks

P (yi = 1|xi,w) = sig(NN(xi))

or systems of basis functions or kernel systems
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III. Classification via Regression

• Linear Regression:

f(xi,w) = w0 +
M−1∑
j=1

wjxi,j

= xTi w

• We define as target yi = 1 if the pattern xi belongs to class 1 and yi = 0 (or

yi = −1 ) if pattern xi belongs to class 0

• We calculate weights wLS = (XTX)−1XTy as LS solution, exactly as in linear

regression

• For a new pattern x we calculate f(x) = xTwLS and assign the pattern to class 1

if f(x) > 1/2 (or f(x) > 0 ) ; otherwise we assign the pattern to class 0
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Bias

• Asymptotically, a LS-solution converges to the posterior class probabilities, although

a linear functions is typically not able to represent P (c = 1|x). The resulting class

boundary can still be sensible

• One can expect good class boundaries in high dimensions and/or in combination with

basis functions, kernels and neural networks; in high dimensions sometimes consistency

can be achieved
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Classification via Regression with Linear Functions
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Classification via Regression with Radial Basis Functions
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Performance

• Although the approach might seem simplistic, the performance can be excellent (in

particular in high dimensions and/or in combination with basis functions, kernels and

neural networks). The calculation of the optimal parameters can be very fast!
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