Linear Algebra (Review)

Volker Tresp 2016

Vectors

- k is a scalar
- \mathbf{c} is a column vector. Thus in two dimensions,

$$
\mathbf{c}=\binom{c_{1}}{c_{2}}
$$

- (More precisely, a vector is defined in a vector space. Example: $\mathbf{c} \in \mathbb{R}^{2}$ and $\mathbf{c}=$ $c_{i} \mathbf{e}_{1}+c_{2} \mathbf{e}_{2}$ with an orthogonal basis $\mathbf{e}_{1}, \mathbf{e}_{2}$. We denote with \mathbf{c} both the vector and its component representation)
- c_{i} is the i-th component of \mathbf{c}
- $\mathbf{c}^{T}=\left(c_{1}, c_{2}\right)$ is a row vector, the transposed of \mathbf{c}

Matrices

- A is a matrix. (A matrix is a 2-D array that is defined with respect to a vector space.)
- If A is a $k \times l$-dimensional matrix,
- then the transposed A^{T} is an $l \times k$-dimensional matrix
- the columns (rows) of A are the rows (columns) of A^{T} and vice versa

Addition of Two Vectors

- Let $\mathbf{c}=\mathbf{a}+\mathbf{d}$
- Then $c_{j}=a_{j}+d_{j}$

Multiplication of a Vector with a Scalar

- $\mathbf{c}=k \mathbf{a}$ is a vector with $c_{j}=k a_{j}$
- $C=k A$ is a matrix of the dimensionality of A, with $c_{i, j}=k a_{i, j}$

Scalar Product of Two Vectors

- The scalar product (also called dot product) is defines as

$$
\mathbf{a} \cdot \mathbf{c}=\mathbf{a}^{T} \mathbf{c}=\sum_{m=1}^{l} a_{m} c_{m}
$$

and is a scalar

- The dot product is identical to the inner product $\langle\mathbf{a}, \mathbf{c}\rangle$ for Euclidean vector spaces with orthonormal basis vectors \mathbf{e}_{i}

$$
\langle\mathbf{a}, \mathbf{c}\rangle=\left(\sum_{i} a_{i} \mathbf{e}_{i}\right)\left(\sum_{i^{\prime}} c_{i^{\prime}} \mathbf{e}_{i^{\prime}}\right)=\sum_{i} a_{i} c_{i}=\mathbf{a} \cdot \mathbf{c}=\mathbf{a}^{T} \mathbf{c}
$$

Matrix-Vector Product

- A matrix consists of many row vectors. So a product of a matrix with a column vector consists of many scalar products of vectors
- If A is a $k \times l$-dimensional matrix and \mathbf{c} a l-dimensional column vector
- Then $\mathbf{d}=A \mathbf{c}$ is a k-dimensional column vector \mathbf{d} with

$$
d_{j}=\sum_{m=1}^{l} a_{j, m} c_{m}
$$

Matrix-Matrix Product

- A matrix also consists of many column vectors. So a product of matrix with a matrix consists of many matrix-vector products
- If A is a $k \times l$-dimensional matrix and C an $l \times p$-dimensional matrix
- Then $D=A C$ is a $k \times p$-dimensional matrix with

$$
d_{i, j}=\sum_{m=1}^{l} a_{i, m} c_{m, j}
$$

Multiplication of a Row-Vector with a Matrix

- Multiplication of a row vector with a matrix is a row vector. If A is a $k \times l$-dimensional matrix and \mathbf{d} a k-dimensional Vector and if

$$
\mathbf{c}^{T}=\mathrm{d}^{T} A
$$

Then \mathbf{c} is a l-dimensional vector with $c_{i}=\sum_{m=1}^{k} d_{m} a_{m, i}$

Outer Product

- Special case: Multiplication of a column vector with a row vector is a matrix. Let \mathbf{d} be a k-dimensional vector and \mathbf{c} be a p-dimensional vector, then

$$
A=\mathrm{dc}^{T}
$$

is a $k \times p$ matrix with $a_{i, j}=d_{i} c_{j}$. This is also called an outer product (when related to vector spaces) and is written as $\mathbf{d} \otimes \mathbf{c}$. Note that a matrix is generated from two vectors

- An outer product is a special case of a tensor product

Matrix Transposed

- The transposed A^{T} changes rows and columns

$$
\begin{gathered}
\left(A^{T}\right)^{T}=A \\
(A C)^{T}=C^{T} A^{T}
\end{gathered}
$$

Unit Matrix

$$
I=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
& & \ldots & \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

Diagonal Matrix

- $k \times k$ diagonal matrix:

$$
A=\left(\begin{array}{cccc}
a_{1,1} & 0 & \ldots & 0 \\
0 & a_{2,2} & \ldots & 0 \\
& & \ldots & \\
0 & \ldots & 0 & a_{k, k}
\end{array}\right)
$$

Matrix Inverse

- Let A be a square matrix
- If there is a unique inverse matrix A^{-1}, then we have

$$
A^{-1} A=I \quad A A^{-1}=I
$$

- If the corresponding inverse exist, $(A C)^{-1}=C^{-1} A^{-1}$

Orthogonal Matrices

- Orthogonal Matrix (more precisely: Orthonormal Matrix): R is a (quadratic) orthogonal matrix, if all columns are orthonormal. It follows (non-trivially) that all rows are orthonormal as well and

$$
\begin{equation*}
R^{T} R=I \quad R R^{T}=I \quad R^{-1}=R^{T} \tag{1}
\end{equation*}
$$

Singular Value Decomposition (SVD)

- Any $N \times M$ matrix X can be factored as

$$
X=U D V^{T}
$$

where U and V are both orthonormal matrices. U is an $N \times N$ Matrix and V is an $M \times M$ Matrix.

- D is an $N \times M$ diagonal matrix with diagonal entries (singular values) $d_{i} \geq$ $0, i=1, \ldots, \tilde{r}$, with $\tilde{r}=\min (M, N)$
- The \mathbf{u}_{j} (columns of U) are the left singular vectors
- The \mathbf{v}_{j} are the right singular vectors
- The d_{j} are the singular values

