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OK, LET’S GET SERIOUS NOW … 
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Deep Learning 

Hierarchical Feature Extraction 

SOURCE: http://www.eidolonspeak.com/Artificial_Intelligence/SOA_P3_Fig4.png 
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Deep Learning 

Hierarchical Feature Extraction 

SOURCE: 

Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face 

verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1701-1708). 
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Neural Networks 

Fully Connected Feedforward Neural Network 

INPUTS OUTPUT HIDDEN 

1 



2016/06/01 

Neural Networks 

1D Convolutional Feedforward Neural Network 
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1D Convolution (mode=HALF) 
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Neural Networks 

2D Convolutional Feedforward Neural Network 

SOURCE: http://deeplearning.net/tutorial/_images/mylenet.png 
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Neural Networks 

Recurrent Neural Network (Elman architecture) 
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Neural Networks 

Recurrent Neural Network (Elman architecture, unfolded) 
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Neural Networks 

Bi-Directional Recurrent Neural Network (Elman architecture, unfolded) 
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NEURAL NETWORKS HAVE BEEN AROUND FOR DECADES! 

SO WHAT’S NEW? 
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OPTIMIZATION & LEARNING 
 

OPTIMIZATION ALGORITHMS 
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• Training a neural network means minimization of some non-convex 

differentiable cost function using iterative gradient-based optimization methods 

• Gradients are computed using backpropagation 

• The simplest optimization algorithm is “gradient descent” 

• … but it has limitations 

IMAGE SOURCE: 

Martens, J. (2010). Deep Learning via Hessian-Free Optimization. In Proceedings 

of the 27th International Conference on Machine Learning (pp. 735-742). 
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Optimization Algorithms 

• Neural networks are composed of differentiable building blocks 

• Training a neural network means minimization of some non-convex 

differentiable cost function using iterative gradient-based optimization methods 

• Gradients are computed using backpropagation 

• The simplest optimization algorithm is “gradient descent” 

• … but it has limitations 

• Information about the local curvature of the cost function helps to adjust the 

direction and magnitude of the gradient for better progress (along the lines of 

Newton’s method) 

• Exact local curvature is infeasible to compute 

• Recent optimization algorithms like AdaGrad, RMSProp, AdaDelta etc. try to 

approximate local curvature information efficiently 
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• First-order gradient-based optimization methods are not invariant to 

reparameterization of the optimization objective 

• Instead of using more sophisticated optimization algorithms that are better at 

dealing with ill-conditioned optimization problems, reparameterize the 

objective function so that simpler optimization algorithms work better 

• We typically standardize (approximately decorrelate) real-valued (Gaussian-

like) inputs which makes the optimization problem easier 

• Why not do this in each (hidden) layer as well? 

 Batch Normalization 
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What’s new? 

Attention Mechanism in Image Caption Generation 

SOURCE: 

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015). Show, Attend and Tell: Neural Image Caption 

Generation with Visual Attention. In Proceedings of The 32nd International Conference on Machine Learning (pp. 2048-2057). 
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Attention Mechanism in Text Translation 
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What’s new? 

VGG-16 Architecture 

• Filter size 33 

• 2+ successive convolutions with 

before pooling instead of the 

common CONV  POOL chain 

• Convolution mode “half” 

• More layers  larger capacity 

• Parameter-efficient due to small 

filters 
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Encoder-Decoder Framework 

SOURCE: https://www.tensorflow.org/versions/r0.8/tutorials/seq2seq/index.html#sequence-to-sequence-models 
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End-to-end model (object recognition) 

SOURCE: 

Johnson, J., Karpathy, A., & Fei-Fei, L. (2015). DenseCap: Fully Convolutional Localization Networks for Dense 

Captioning. arXiv preprint arXiv:1511.07571. 
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End-to-end model (object recognition) 

SOURCE: 

Johnson, J., Karpathy, A., & Fei-Fei, L. (2015). DenseCap: Fully Convolutional Localization Networks for Dense 

Captioning. arXiv preprint arXiv:1511.07571. 
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End-to-end model (question answering) 
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GPUs 
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DEEP LEARNING is NOT only meant literally, but 

more importantly it is about learning solutions to 

problems in a fully automated way. 
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http://cs231n.github.io 
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Recommended Material 

INTRODUCTION 

• Tutorial on Neural Networks (Deep Learning and Unsupervised Feature 

Learning): http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 

• Deep Learning for Computer Vision lecture: http://cs231n.stanford.edu (http://cs231n.github.io) 

• Deep Learning for NLP lecture: http://cs224d.stanford.edu (http://cs224d.stanford.edu/syllabus.html) 

• Deep Learning for NLP (without magic) tutorial: http://lxmls.it.pt/2014/socher-lxmls.pdf (Videos from NAACL 

2013: http://nlp.stanford.edu/courses/NAACL2013) 

• Bengio's Deep Learning book: http://www.deeplearningbook.org 
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Recommended Material 

PARAMETER INITIALIZATION 

• Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural 

networks." International Conference on Artificial Intelligence and Statistics. 2010. 

• He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on 

ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1026-1034). 

 

BATCH NORMALIZATION 

• Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal 

Covariate Shift. In Proceedings of The 32nd International Conference on Machine Learning (pp. 448-456). 

• Cooijmans, T., Ballas, N., Laurent, C., & Courville, A. (2016). Recurrent Batch Normalization. arXiv preprint 

arXiv:1603.09025. 

 

DROPOUT 

• Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint 

arXiv:1207.0580 (2012). 

• Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine 

Learning Research 15.1 (2014): 1929-1958.  
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Recommended Material 

OPTIMIZATION & TRAINING 

• Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic 

optimization. The Journal of Machine Learning Research, 12, 2121-2159. 

• Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701. 

• Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent 

magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2. 

• Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep 

learning. In Proceedings of the 30th International Conference on Machine Learning (ICML) (pp. 1139-1147). 

• Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization.arXiv preprint arXiv:1412.6980. 

• Martens, J., & Sutskever, I. (2012). Training deep and recurrent networks with hessian-free optimization. In Neural 

networks: Tricks of the trade (pp. 479-535). Springer Berlin Heidelberg. 
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Recommended Material 

COMPUTER VISION 

• Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. 

In Advances in Neural Information Processing Systems (pp. 1097-1105). 

• Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in 

face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1701-1708). 

• Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with 

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9). 

• Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv 

preprint arXiv:1409.1556. 

• Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. In Advances in Neural Information 

Processing Systems (pp. 2008-2016). 

• Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal 

networks. In Advances in Neural Information Processing Systems (pp. 91-99). 

• Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015). Show, Attend and Tell: Neural 

Image Caption Generation with Visual Attention. In Proceedings of The 32nd International Conference on Machine 

Learning (pp. 2048-2057). 

• Johnson, J., Karpathy, A., & Fei-Fei, L. (2015). DenseCap: Fully Convolutional Localization Networks for Dense 

Captioning. arXiv preprint arXiv:1511.07571. 
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Recommended Material 

NATURAL LANGUAGE PROCESSING 

• Bengio, Y., Schwenk, H., Senécal, J. S., Morin, F., & Gauvain, J. L. (2006). Neural probabilistic language models. 

In Innovations in Machine Learning (pp. 137-186). Springer Berlin Heidelberg. 

• Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing 

(almost) from scratch. The Journal of Machine Learning Research, 12, 2493-2537. 

• Mikolov, T. (2012). Statistical language models based on neural networks (Doctoral dissertation, PhD thesis, Brno 

University of Technology. 2012.) 

• Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv 

preprint arXiv:1301.3781. 

• Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases 

and their compositionality. In Advances in Neural Information Processing Systems (pp. 3111-3119). 

• Mikolov, T., Yih, W. T., & Zweig, G. (2013). Linguistic Regularities in Continuous Space Word Representations. In HLT-

NAACL (pp. 746-751). 

• Socher, R. (2014). Recursive Deep Learning for Natural Language Processing and Computer Vision (Doctoral 

dissertation, Stanford University). 

• Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning 

phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. 

• Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv 

preprint arXiv:1409.0473. 


