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WHAT'S THE
SQBIG DEAL?




OK, LET’S GET SERIOUS NOW ...



Deep Learning vs. Classic Data Modeling

. LEARNED FROM DATA

OUTPUT

OUTPUT
HAND-DESIGNED HAND-DESIGNED
PROGRAM FEATURES
INPUT INPUT E INPUT INPUT
RULE-BASED CLASSIC MACHINE DEEP LEARNING
SYSTEMS LEARNING

REPRESENTATION LEARNING
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Deep Learning

Hierarchical Feature Extraction
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Deep Learning
Hierarchical Feature Extraction
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NEURAL NETWORKS



Neural Networks
Linear Regression

INPUTS
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OUTPUT



Neural Networks
Logistic Regression

INPUTS OUTPUT

». § = logistic(w! z + b)

1

logistic(z) = gy
e z
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Neural Networks
Fully Connected Feedforward Neural Network

h=p(WWz + b))
logistic(W 2 h + b(?))

y
! / tanh(z)
| ¢(z) = < relu(z)

> 0
A relu(z) := max(0, z) = < ©
0 2<0
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Neural Networks

1D Convolutional Feedforward Neural Network
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Neural Networks
1D Convolution

FILTERS INPUT OUTPUT

# FEATURES

WINDOW SIZE

TIME CONV
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Neural Networks
1D Convolution
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Neural Networks
1D Convolution
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Neural Networks
1D Convolution
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Neural Networks
1D Convolution

FILTERS INPUT OUTPUT

# FEATURES
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Neural Networks
1D Convolution
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Neural Networks
1D Convolution

FILTERS INPUT OUTPUT
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Neural Networks
1D Convolution
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Neural Networks
1D Convolution
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Neural Networks
1D Convolution

AND SO ON ...
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Neural Networks

1D Convolution (mode=HALF)

WINDOW SIZE
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Neural Networks
1D Convolution (mode=HALF)
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Neural Networks
1D Convolution (mode=HALF)

FILTERS ZERO
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Neural Networks
1D Convolution (mode=HALF)
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Neural Networks
1D Convolution (mode=HALF)

AND SO ON ...
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Neural Networks
1D Pooling (max, sum, average, ...)
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Neural Networks
1D Pooling (max, sum, average, ...)

[} [}
........

TIME

2016/06/01

POOL

@0

O



Neural Networks
1D Pooling (max, sum, average, ...)
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Neural Networks
2D Convolutional Feedforward Neural Network

Inpur layer {31 4 feacure maps

. 1 (C1) 4 fearure maps (52) 6 feature maps {C2) & feature maps

| convalution layer | sub-sampling layer l convalution layer | sub-sampling layer | fully connected MLF'l
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Neural Networks
Recurrent Neural Network (Elman architecture)

INPUTS OUTPUT

%‘

ht — tanh(th -+ Uht_l -+ b)
g = ¢(Why + d)
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Neural Networks

Recurrent Neural Network (Elman architecture, unfolded)
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Neural Networks

I-Directional Recurrent Neural Network (Elman architecture, unfolded)
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SO WHAT’S NEW?



What’s new?

OPTIMIZATION ALGORITHMS BUILDING BLOCKS * Theano

« AdaGrad  Spatial/Temporal Pooling Blocks + Fuel
« AdaDelta  Attention Mechanism Keras

- Adam « Gated Recurrent Units Lasagne
 RMSProp * Beam-search for PyLearn2*
« Hessian-Free Optimization sequence generation * TensorFlow
. ...  Variable-length sequence modeling * Torch7
REPARAMETERIZATION . ...  Caffe...

« Batch Normalization ARCHITECTURES

« Weight Normalization * Inception (Google)

. ... * VGG (Oxford University)

REGULARIZATION * Encoder-Decoder Framework

* Dropout » End-to-end Models . GPUs

« DropConnect . ... . Data
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What’s new?

OPTIMIZATION ALGORITHMS
« AdaGrad

AdaDelta

Adam

RMSProp

Hessian-Free Optimization

REPARAMETERIZATION
« Batch Normalization
« Weight Normalization

REGULARIZATION

* Dropout
* DropConnect
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What’s new?
Optimization Algorithms

Neural networks are composed of differentiable building blocks
Training a neural network means minimization of some non-convex
differentiable cost function using iterative gradient-based optimization methods
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What’s new?
Optimization Algorithms

Neural networks are composed of differentiable building blocks
Training a neural network means minimization of some non-convex
differentiable cost function using iterative gradient-based optimization methods
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What’s new?
Optimization Algorithms

Neural networks are composed of differentiable building blocks
Training a neural network means minimization of some non-convex
differentiable cost function using iterative gradient-based optimization methods

Gradients are computed using backpropagation
The simplest optimization algorithm is “gradient descent”
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What’s new?
Optimization Algorithms

Neural networks are composed of differentiable building blocks

Training a neural network means minimization of some non-convex
differentiable cost function using iterative gradient-based optimization methods
Gradients are computed using backpropagation

The simplest optimization algorithm is “gradient descent”

... but it has limitations
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What’s new?
Optimization Algorithms

2016/06/01

Neural networks are composed of differentiable building blocks

Training a neural network means minimization of some non-convex
differentiable cost function using iterative gradient-based optimization methods
Gradients are computed using backpropagation

The simplest optimization algorithm is “gradient descent”

... but it has limitations

Information about the local curvature of the cost function helps to adjust the
direction and magnitude of the gradient for better progress (along the lines of
Newton’s method)

Exact local curvature is infeasible to compute

Recent optimization algorithms like AdaGrad, RMSProp, AdaDelta etc. try to
approximate local curvature information efficiently



What’s new?
Reparameterization

First-order gradient-based optimization methods are not invariant to
reparameterization of the optimization objective
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What’s new?
Reparameterization

First-order gradient-based optimization methods are not invariant to
reparameterization of the optimization objective

Instead of using more sophisticated optimization algorithms that are better at
dealing with ill-conditioned optimization problems, reparameterize the
objective function so that simpler optimization algorithms work better
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What’s new?
Reparameterization
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First-order gradient-based optimization methods are not invariant to
reparameterization of the optimization objective

Instead of using more sophisticated optimization algorithms that are better at
dealing with ill-conditioned optimization problems, reparameterize the
objective function so that simpler optimization algorithms work better

We typically standardize (approximately decorrelate) real-valued (Gaussian-
like) inputs which makes the optimization problem easier



What’s new?
Reparameterization

2016/06/01

First-order gradient-based optimization methods are not invariant to
reparameterization of the optimization objective

Instead of using more sophisticated optimization algorithms that are better at
dealing with ill-conditioned optimization problems, reparameterize the
objective function so that simpler optimization algorithms work better

We typically standardize (approximately decorrelate) real-valued (Gaussian-
like) inputs which makes the optimization problem easier

Why not do this in each (hidden) layer as well?

— Batch Normalization



What’s new?
Regularization

Randomly set neurons to zero

Results in an ensemble with an exponential
number of members whose parameters are
shared

Primarily used in fully connected layers
because of the large number of parameters
Rarely used in convolutional layers

Rarely used in recurrent neural networks (if at
all between the hidden state and output)
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What’s new?

2016/06/01

BUILDING BLOCKS
 Spatial/Temporal Pooling
 Attention Mechanism
« Gated Recurrent Units
* Beam-search for

sequence generation
 Variable-length sequence modeling
ARCHITECTURES
* Inception
* VGG
Encoder-Decoder Framework
End-to-end Models



What’s new?
Attention Mechanism in Image Caption Generation

. -
%

A dog is standing on a hardwood floor. A stop sign is on a road with a
P mountain in the background,

A giraffe standing in a forest with

A little girl sitting on a bed with
a teddy bear. in the water. trees in the background.
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What’s new?
Attention Mechanism in Text Translation
years

in recent

down

growth has slowed

Economic
Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
slowed down in recent vyears .
|
|

Economic growth has

| r

La croissance économique s' est ralentie ces derniéres années
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What’s new?
Inception Architecture

Convolution
AvgPool
MaxPool
. Concat
@» Dropout
@ Fully connected
@ Softmax

Google
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What’s new?
VGG-16 Architecture

224x224
 Filter size 3x3
- 2+ successive convolutions with 112X 112
before pooling instead of the - 56x56
common CONV — POOL chain 28x28 T
. 11 ) x
» Convolution mode “half 7x7 131
. ‘ X
* More layers = larger capacity £ )
« Parameter-efficient due to small Mo
filters UL Wax- 'podling pooling
y_,lﬁax _ pooling o Lieeeeeeens B e
%x pooling . ...eeeeset -
/_)?)ooling --------- o

»

-
L
-
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What’s new?
Encoder-Decoder Framework

PR A N N A s
T T LT T T
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What’s new?
End-to-end model (object recognition)

§ Stanford

Image: Region features:
3xWxH Conv features: BxCxXxY Reaion Codes:
CxW xH ° BxD
®
°
CNN . ‘ ¢ LSTM™
Striped gray cat
Recognition
-=7 T ] N _eiV‘f_Drk Cats watching TV
T " Localization Layer  TTTTee--- .
/ Region Proposals: Sampling Gria -
4k x W' x H Best Proposals: BxXxYx2
Bx4

— | Conv x| |l— .

A | Grid _r > o

—, Sampling = Generator .

Region scores:
kxW xH

Conv features:

Bilinear Sampler g /

Region features:

CxWxH

Bx512x7x7
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What’s new? ‘D StanfOI'd

End-to-end model (object recognition) : Uni it
niversity

hands holding a phone  front wheel of a bus man wearing a black shirt
red shirt on a man jelephant is standing
large green elephant is brown

trees

red and white sign white tennis shoes

head of a giraffe legs of a zebra

roof of a
building

trunk of an
green trees

elephant
in the
background
rocks on
the ground Bes
ball is » alenh
white =
* leg of an
o A elephant
disb shadow on
PRSI elephant is standing the ground
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What’s new?

End-to-end model (question answering) 1Y

Semantic Memory
Module

—_

Glove vectors)

Episodic Memorye2
Module ’

0.0

Answer module

I 0.3 0.0 0.0 0.0 I 0.9 0.0 0.0 1m

N 7
& P
o

JIEEEETERFTTERFTT

Question Module g
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Data Flow Graphs / Computation Graphs

2016/06/01

SGD Trainer

L R ™ S

=@

Logit Layer



What’s new?

Theano
Blocks + Fuel
Keras
Lasagne
PyLearn2*
TensorFlow
Torch7
Caffe...

2016/06/01



Computation Graphs
Matrix-Vector Multiplication

SYMBOL TYPE
data type

operator

2016/06/01

VECTOR
float

dot

MATRIX VECTOR
float float



Computation Graphs
Indexing

2016/06/01

SYMBOL TYPE
data type

operator

MATRIX
float

Indexing

MATRIX VECTOR
float int




Computation Graphs
Graph Optimization

SCALAR
float

div

X
2

mul

SCALAR
float

2016/06/01

SCALAR
float

OPTIMIZATION

SCALAR
float



Computation Graphs
Automatic Differentiation

2016/06/01

Yy<—2

SCALAR
float

square

SCALAR
float




Computation Graphs
Automatic Differentiation

2016/06/01

Yy<—2

SCALAR
float

square

SCALAR
float

GRAD(y, x)



Computation Graphs
Automatic Differentiation

2016/06/01

Yy<—2

SCALAR
float

square

SCALAR
float

GRAD(y, x)

SCALAR
float

mul

— 2
ox v



Computation Graphs
Automatic Differentiation

AUTOMATIC DIFFERENTIATION

EXTREMELY POWERFUL FEATURE

DIFFERENTIABLE
OPTIMIZATION OBJECTIVES
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What’s new?

GPUs
Data

2016/06/01



GPUs

NVIDIA.



What’s new?
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DEEP LEARNING is NOT only meant literally, but
more importantly it is about learning solutions to
problems in a fully automated way.




Recommended Material

Module 1: Neural Networks

Image Classification: Data-driven Approach, k-Nearest Neighbor, train/val/test splits C O U rS e | n St rU CtO rS

L1/L2 distances, hyperparameter search, cross-validation
Linear classification: Support Vector Machine, Softmax

parameteric approach, bias trick, hinge loss, cross-entropy loss, L2 regularization, web demo
Optimization: Stochastic Gradient Descent

optimization landscapes, local search, learning rate, analytic/numerical gradient
Backpropagation, Intuitions

chain rule interpretation, real-valued circuits, patterns in gradient flow

Neural Networks Part 1: Setting up the Architecture

model of a hiological neuron, activation functions, neural net architecture, representational power

Neural Networks Part 2: Setting up the Data and the Loss
preprocessing, weight initialization, batch normalization, regularization (L2/dropout), loss functions Fe|":e| |_| AndreJ Karpathy J USU N JOh nson
Neural Networks Part 3: Learning and Evaluation

gradient checks, sanity checks, babysitting the learning process, momentum (+nesterov), second-order methods,
Adagrad/RMSprop, hyperparameter optimization, model ensembles

Module 2: Convolutional Neural Networks

Convoelutional Neural Networks: Architectures, Convolution / Pooling Layers

layers, spatial arrangement, layer patterns, layer sizing patterns, AlexNet/ZFNet/VGGNet case studies,

computational considerations http //C523 1 n. Stanford . ed UI
Understanding and Visualizing Convolutional Neural Networks httpllcszsln glthub iO

tSNE embeddings, deconvnets, data gradients, fooling ConvNets, human comparisons

Transfer Learning and Fine-tuning Convolutional Neural Networks

2016/06/01



Recommended Material

CS224d: Deep Learning for Natural Language Processing

(0]

:.,-- o ° I\ -.\:
\ - enjoyed @ / - \[_]

first 5 SN 5\ the lecture

5N

fifteen  minutes

Course Description

Natural language processing (NLP) is one of the most important technologies of the information age. Understanding complex language utterances is also a crucial
part of artificial intelligence. Applications of NLP are everywhere because people communicate most everything in language: web search, advertisement, emails,
customer service, language translation, radiology reports, etc. There are a large variety of underlying tasks and machine learming models powering NLP
applications. Recently, deep learning approaches have obtained very high performance across many different NLP tasks. These models can often be trained with a
single end-to-end model and do not require traditional, task-specific feature engineering. In this spring quarter course students will learn to implement, train, debug,
visualize and invent their own neural network models. The course provides a deep excursion into cutting-edge research in deep learning applied to NLP. The final
project will involve training a complex recurrent neural network and applying it to a large scale NLP problem. On the model side we will cover word vector
representations, window-based neural networks, recurrent neural networks, long-short-term-memory maodels, recursive neural networks, convolutional neural
networks as well as some very novel models involving a memory component. Through lectures and programming assignments students will learn the necessary
engineering tricks for making neural networks work on practical problems.

2016/06/01

Course Instructor

http://cs224d.stanford.edu/



Recommended Material

INTRODUCTION
Tutorial on Neural Networks (Deep Learning and Unsupervised Feature
Learning): http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
Deep Learning for Computer Vision lecture: http://cs231n.stanford.edu (http://cs231n.qithub.io)
Deep Learning for NLP lecture: http://cs224d.stanford.edu (http://cs224d.stanford.edu/syllabus.html)
Deep Learning for NLP (without magic) tutorial: http://Ixmls.it.pt/2014/socher-Ixmls.pdf (Videos from NAACL
2013: http://nlp.stanford.edu/courses/NAACL 2013)
Bengio's Deep Learning book: http://www.deeplearningbook.org

2016/06/01



Recommended Material

PARAMETER INITIALIZATION
Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." International Conference on Atrtificial Intelligence and Statistics. 2010.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on
ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1026-1034).

BATCH NORMALIZATION
loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of The 32nd International Conference on Machine Learning (pp. 448-456).
Cooijmans, T., Ballas, N., Laurent, C., & Courville, A. (2016). Recurrent Batch Normalization. arXiv preprint
arXiv:1603.09025.

DROPOUT
Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint

arXiv:1207.0580 (2012).
Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine

Learning Research 15.1 (2014): 1929-1958.

2016/06/01



Recommended Material

OPTIMIZATION & TRAINING

2016/06/01

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning Research, 12, 2121-2159.

Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2.

Sutskever, |., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep
learning. In Proceedings of the 30th International Conference on Machine Learning (ICML) (pp. 1139-1147).
Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization.arXiv preprint arXiv:1412.6980.

Martens, J., & Sutskever, I. (2012). Training deep and recurrent networks with hessian-free optimization. In Neural
networks: Tricks of the trade (pp. 479-535). Springer Berlin Heidelberg.



Recommended Material

COMPUTER VISION

2016/06/01

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems (pp. 1097-1105).

Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in
face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1701-1708).
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9).
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.

Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. In Advances in Neural Information
Processing Systems (pp. 2008-2016).

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing Systems (pp. 91-99).

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015). Show, Attend and Tell: Neural
Image Caption Generation with Visual Attention. In Proceedings of The 32nd International Conference on Machine
Learning (pp. 2048-2057).

Johnson, J., Karpathy, A., & Fei-Fei, L. (2015). DenseCap: Fully Convolutional Localization Networks for Dense
Captioning. arXiv preprint arXiv:1511.07571.



Recommended Material

NATURAL LANGUAGE PROCESSING

2016/06/01

Bengio, Y., Schwenk, H., Senécal, J. S., Morin, F., & Gauvain, J. L. (2006). Neural probabilistic language models.

In Innovations in Machine Learning (pp. 137-186). Springer Berlin Heidelberg.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing
(almost) from scratch. The Journal of Machine Learning Research, 12, 2493-2537.

Mikolov, T. (2012). Statistical language models based on neural networks (Doctoral dissertation, PhD thesis, Brno
University of Technology. 2012.)

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases
and their compositionality. In Advances in Neural Information Processing Systems (pp. 3111-3119).
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