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Avoiding Embarrassments

• Big Data Scientist found: “Taking your breaks outside causes lung cancer!”
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Causation and Correlation

• Correlation does not imply causation (well known in statistics)

• No correlation without causation (since we are living in a causal world)
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• Causality, randomness, direction of time, destiny, God and all that
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Causality

• In this lecture we follow the theory of Judea Pearl (Judea Pearl: Causality, 2nd Edition,

2009)

• Recommended reading: Judea Pearl, Causal inference in statistics: an overview, Tech-

nical Report R-350, September 2009

• Causality goes beyond statistical modelling and needs additional constructs
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What is Causality? Superfluous?

• See: http://singapore.cs.ucla.edu/LECTURE/

• “All philosophers,”says Bertrand Russell,“imagine that causation is one of the funda-

mental axioms of science, yet oddly enough, in advanced sciences, the word ’cause’

never occurs ... The law of causality, I believe, is a relic of bygone age, surviving, like

the monarchy, only because it is erroneously supposed to do no harm ...”

• “Likewise, we say that the ratio f/a helps us DETERMINE the mass, not that it

CAUSES the mass. Such distinctions are not supported by the equations of physics,

and this leads us to ask whether the whole causal vocabulary is purely metaphysical.

“surviving, like the monarchy...etc.”

6



What is Causality? Superfluous? Cont’d

• “I felt like a buccaneer of Drake’s days -... I interpreted that sentence of Galton to mean

that there was a category broader than causation, namely correlation, of which causati-

on was only the limit, and that this new conception of correlation brought psychology,

anthropology, medicine, and sociology in large parts into the field of mathematical

treatment.” Karl Pearson (1934)

• Laplace’s demon was the first published articulation of causal or scientific determinism

by Pierre-Simon Laplace in 1814. According to determinism, if someone (the Demon)

knows the precise location and momentum of every atom in the universe, their past

and future values for any given time are entailed; they can be calculated from the laws

of classical mechanics

• Possible arguments in favor of an arrow of time: entropy, quantum mechanics (Co-

penhagen interpretation), relativity, chaos theory, computational complexity, ...
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What is Causality? Important Concept Beyond Statistics

• J. Pearl’s argument: If you wish to include the entire universe in the model, causality

disappears because interventions disappear - the manipulator and the manipulated

loose their distinction. However, scientists rarely consider the entirety of the universe

as an object of investigation. In most cases the scientist carves a piece from the

universe and proclaims that piece: IN namely, the FOCUS of investigation. The rest of

the universe is then considered OUT or BACKGROUND, and is summarized by what

we call BOUNDARY CONDITIONS. This choice of INs and OUTs creates asymmetry

in the way we look at things, and it is this asymmetry that permits us to talk about

“outside intervention”, hence, causality and cause-effect directionality
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Causality Goes Beyond Statistics!

• These are causal questions because they require some knowledge of the data-generating

process; they cannot be computed from the data alone, nor from the distributions that

govern the data

• The laws of probability theory do not dictate how one property of a distribution ought

to change when another property is modified. This information must be provided by

causal assumptions which identify relationships that remain invariant when exter-

nal conditions change. Behind every causal conclusion there must lie some causal

assumption that is not testable in observational studies

• Causal analysis is about change, and change demands a new vocabulary that distin-

guishes “seeing” from “doing”

• Pearl’s theory also permits to deal with counterfactuals: if there would not have been

ice on the road I would not have had that accident and I would have been in time for

the job interview, I would have gotten the job and I would be rich by now
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Experimental Control (Randomized Experiments)

• Causal assumptions, in contrast, cannot be verified, even in principle, unless one resorts

to experimental control

• This is exactly what is going on in randomized clinical studies

• But can we determine the effect of intervention from a casual model? This is the topic

in the following slides
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Do-Calculus

• We start with a Causal Bayesian Network (Causal Probabilistic Network (CPN)) that

reflects our causal assumptions about a domain

• It must be complete, such that the uncertainties (noise) in the different nodes are

independent

• Pearl argues, that such a causal model cannot come from a statistical analysis alone:

it must be formulated by the expert

• (Comment: We have been working on the problem of identifying causality from obser-

ved data and other groups are still doing that. Pearl would argue that causal directions

can only be detected if additional assumptions are made)

• Then, to calculate the causal effect of a on y, one needs to remove all incoming

arrows into a, and in this modified CPN, calculate P (y|do(a)). In general this is

not identical to the P (y|a) in the original CPN
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What Variables to Condition On?

• What can I do if I can make causal assumptions but I cannot quantify the conditional
probabilities in the model, but I can access data

• Solution: Although in general P (y|a) 6= P (y|do(a)), it might be that

P (y|a, S) = P (y|do(a), S)
where S is a set of variables that are not descendants of a

• Then collect data on a, y and the variables in S and model P̂ (y|a, S) ≈
P (y|a, S)

• In the previous example, S = x and

P (y|a, x) = P (y|do(a), x)
from which

P (y|do(a)) =
∑
x

P (x)P (y|a, x)

• S is called the “sufficient set” or “admissible set” for adjustment
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Formal Recipe (J. Pearl)

• Definition: (Admissible sets - the back-door criterion for the causal effect of a on y).

A set S is admissible (or “sufficient”) for adjustment if two conditions hold:

– 1. No element of S is a descendant of a

– 2. The elements of S “block” all “back-door” paths from a to y, namely all paths

that end with an arrow pointing to a.

• Then: P (y|a, S) = P (y|do(a), S)
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A: Models with Two Variables

• If we have prior knowledge that a causes y, then P (y|a) = P (y|do(a))

• a could be an action (medication, treatment) or a potential disease cause (smoking)

• Thus, observed correlation corresponds to causal influence
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Identifiability of Parameters

• Still there can be a problem if always interventions are applied, for example when a

has three states: medication M1, medication M2, no medication. We have a problem

if either medication M1 is applied or medication M2 is applied but never none or both.

Then the models

P̂ (y|M1,M2) = sig(10M1 +9M2)

and

P̂ (y|M1,M2) = sig(−M2 +10)

give the same results if either medication is used. In the second model, medication M2

even appears harmful. The problem is that the case that no medication is given is never

observed and the system cannot be identified (problem of parameter identification)

• This problem is related to the problem of the identification of controlled systems

• Thus we need so called controls (patients which received neither medication)

15





B: Models with Three Variables

• We want to decide about the causal influence of a on y and there is another variable

x, which is correlated with y and potentially with x

• What should we do? Should we include x in the model (correct for x)? The answer

is: it depends

• We call P̂ (y|a) the simple model and P̂ (y|a, x) the controlled model

• We now need to consider several cases
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B.I: x and a are independent

• We observe correlations between x and y and a and y but not between x and a

• The joint model is P (a)P (x)P (y|a, x)

• In this case the observed and the causal model are identical (there is no link into a)

P (y|do(a)) = P (y|a)
Thus the simple model gives the right answer!

• We can also include x

P (y|do(a), x) = P (y|a, x)
and then P̂ (y|do(a)) =

∑
x P̂ (x)P̂ (y|a, x)

• Since a and x are independent, there should be no problem quantifying the causal
influence (parameter identification), if all combinations of a, x are observed

• In the example, the prospect of becoming healthy might depend on if the patient
is wealthy (has a healthier lifestyle in general) but the treatment decision does not
consider that
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Standard Data Set

• The true model is that a and x are independent and the model is

ŷ = −0.18a+0.82x

• The simple model would model (if x ∈ {0,1}, mean(x) = 0.5)

ŷ = −0.18a+0.41

• The controlled model would get

ŷ = −0.18a+0.82x

• If a is a medication, both models tell me that the medication is harmful and the

recommendation would be not to use it
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B.II: Correlations between x and a

• We observe correlations between x and a

• The following three cases deal with this issue

• Dependent on the underlying causal model, we get different answers
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B.II Case 1: a is the cause of x

• Here, a is the cause of x. The joint model is P (a)P (x|a)P (y|a, x)

• Again,

P (y|a) = P (y|do(a))

Thus the simple model gives the right answer!

• We cannot include x in the model since x is not known at the time of decision!

• If one would use the controlled model, one would miss the fact that the bacterial count

was lowered as a consequence of the medication
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Standard Data Set

• Despite the fact that P (y|a, x) was as before I get

ŷ = 0.42a

• Now the result is dramatically different: Now it seems that a has a positive influence

on health!
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B.II Case 2: x is the cause of a

• x is the cause of a. The joint model is P (x)P (a|x)P (y|a, x)

• Now,

P (y|a) =
1

P (a)

∑
x

P (x)P (a|x)p(y|a, x)

• This is not the same as

P (y|do(a)) =
∑
x

P (x)p(y|a, x)

• But

P (y|a, x) = P (y|do(a), x)

• We must include x in the model! Thus the controlled model gives the right answer!

• Collinearity might be a problem in the quantification of the causal influence: all com-

binations of x, y need to be observed!
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• x might be the wealth of the patient. For example it might be that only wealthy people

can afford the expensive treatment and that wealthy people have a healthier lifestyle

and thus get healthier anyways and not because of the treatment





Standard Data Set

• I get again

ŷ = −0.18a+0.82x

• a has a negative effect on health again!
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B.II Case 3: a and y are both causes for x

• The joint model is P (a)P (y|a)P (x|a, y)

• Again P (y|a) = P (y|do(a)). Thus the simple model gives the right answer!

• We cannot include x in the model since x is not known at the time of decision! In

fact including x would give misleading results!

• In the example, x might be the doctor’s salary which depends on the outcome and

the expensive treatment

• We need to use the simple model since x is an effect of a (see Pearl’s recipe)

• Somewhat against intuition, considering less information is helpful in a causal analysis!

The fact that the controlled model gives the wrong answer in this situation is called

Berkson’s paradox
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C: Four Variables

• Often neither x is the cause of a nor a is a cause of x, but both have a hidden

common cause (which does not influence y directly)
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Common Cause

• Thus the joint model is:

P (h)P (x|h)P (a|h)P (y|a, x)

• Then

P (y|a) =
1

P (a)

∑
h,x

P (h)P (x|h)P (a|h)P (y|a, x)

and this is not the same as

P (y|do(a)) =
∑
h,x

P (h)P (x|h)P (y|a, x)

• But when we condition on x,

P (y|a, x) = P (y|do(a), x) = P (y|a, x)

Thus the controlled model gives the right answer!
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• We can also control for h, since

P̂ (y|a, h) =
∑
x

P̂ (x|h)P̂ (y|a, x) = P̂ (y|do(a), h)





Standard Data Set

• I get again

ŷ = −0.18a+0.82x

• a has a negative effect on health again!
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Dealing with Confounders

• When x is a confounder, then there are two options

• First option: As discussed, we include the confounder as input in the model and use

the controlled model

• Second option: We train two models without x as input. The first model only sees the

data where x = 1 and the second model only sees the data with x = 0.

• This strategy is called stratification and the two groups are called strats

• Dealing with confounders is called:“adjusting or controlling for confounders”. The set

of confounders to be included is called an admissible (or sufficient) set of variables for

adjustment.
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Simpson’s Paradox

• When confounders are included sequentially, the intermediate results might look quite

confusing
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Warning on Controlling

• Warning: The rule is NOT, controlling on anything that happened prior to a is safe!

• Consider the model P (b)P (c)P (a|b)P (y|a, c)

• Here

P (y|do(a)) = P (y|a) =
∑
c

P (c)P (y|a, c)

and this is equal to∑
b

P (b)P (y|a, b) =
∑
c

P (b)P (y|a, c) =
∑
b,c

P (b)P (y|a, b, c)

• So here it does not really matter if I control or not
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Counter Example

• Consider the model P (b)P (c)P (d|b, c)P (a|b)P (y|a, c)

• Here, again

P (y|do(a)) = P (y|a)

• But,

P (y|a, d) =
1

P (a, d)

∑
b,c

P (b)P (c)P (d|b, c)P (a|b)P (y|a, c)

P (y|do(a), d) =
1

P (d)

∑
b,c

P (b)P (c)P (d|b, c)P (y|a, c)

and these two expressions are not identical

• So I should not control on d. The reason is that knowing d opens the path between

b and c
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Direct Causal Effect

• So far we focussed on the total effect of a on y

• The term “direct effect” is meant to quantify an effect that is not mediated by other

variables in the model or, more accurately, the sensitivity of y to changes in a while

all other factors in the analysis are held fixed

• To analyse the direct effect, we hold all other variables fixed and analyse

P (y|do(a), do(x = X)

Here we mean that we analyse the effect of a on y by removing all arrows into x (and

a) and by keeping x at the value X
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Effect Modification

• In nonlinear models, a might have a positive effect for some states of x and a negative

effect for others. This issue is called: effect modification, interaction, or heterogeneity

between strata

• Example: A medication is only effective in adults
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Counterfactuals

• Pearl’s theory also permits to deal with counterfactuals: if there would not have been

ice I on the road I would not have had that accident A and I would have been in time

for the job interview J , I would have gotten the job and I would be rich R by now

• Note that counterfactual reasoning can be applied to a an individual

• The conditional probabilities need to be formulated as structural equation models

(SEMs) of the form

P (y|a) = fy(a, uy)

where uy is an exogenous variable

• The model in the above example is P (I)P (A|I)P (J |A)P (R|J)
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Counterfactuals (cont’d)

• Let the exogenous variables uI , uA, uJ , uR all be independent Gaussian zero mean

variables with variance one

• The SEM model is (Ind is the indicator function)

I = fI(uI) = Ind(uI > 0)

A = fA(I, uA) = Ind(I − 1+ uA > 0)

J = fJ(A, uJ) = Ind(−A+ uJ > 0)

R = fR(J, uR) = Ind(J − 1+ uR > 0)

• Note that all functions f() map to {0,1}

• After the fact, all states of the endogenous variables are observed I = 1, A =

1, J = 0, R = 0 and the exogenous variables uI = 0.3, uA = 0.2, uJ =

0.4, uR = 0.1 are known and observed
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• To analyse counterfactual reasoning, we simply change I = 1 into I = 0 and leave

the values of the exogenous variables as is

• Then, using the same values for the exogenous variables, A = 0, J = 1, R = 1.

• Thus A becomes false, J becomes true, and R becomes true as well

• Thus is fact, if the road would not have been icy, I would be rich by now!





Example: Chest Clinic

What is the effect of Lung Cancer (LC) on Dyspnea (D)?
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Conditional Probability

• The joint probability is

P (A)P (S)P (T |A)P (LC|S)P (B|S)P (ToC|T, LC)P (X|ToC)P (D|ToC, B)

• The conditional probability is

P (D|LC) =
1

P (LC)∑
A,S,T,B,ToC

P (A)P (S)P (T |A)P (LC|S)P (B|S)P (ToC|T, LC)P (D|ToC, B)
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Causal Effect

• The joint probability is

P (LC)P (A)P (S)P (T |A)P (B|S)P (ToC|T, LC)P (X|ToC)P (D|ToC, B)

• The conditional probability is

P (D|do(LC)) =∑
A,S,T,C,B,ToC

P (A)P (S)P (T |A)P (B|S)P (ToC|T, LC)P (D|ToC, B)

and this is not the same as P (D|LC), since P (LC|S) is missing
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Observing Causal Effect

• If I randomly manipulate LC, and then observe D, then I can estimate P (D|do(LC))

from this data. This is called a randomized controlled study

• If I simply observe LC and D in patients, then in general P (D|do(LC)) 6=
P (D|LC)
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Conditioning/Controlling

• The solution is to condition on variables (which are not effects of the potential cause),

such that both conditional probabilities become identical

• Let’s assume that I condition on S. Then

P (D|LC, S) =∑
A,T,B,ToC

P (A)P (B|S)P (ToC|T, LC)P (D|ToC, B)

and

P (D|do(LC), S) =∑
A,T,B,ToC

P (A)P (B|S)P (ToC|T, LC)P (D|ToC, B)

and both are the same

• This conditioning on a variable is called “controlling for a variable” or stratification
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• If you do not measure and control for S, then S is called a hidden confounder

• (Alternatively one could control for B)

• We then have

P (D|do(LC)) =
∑
S,B

P (D|LC,B)P (B|S)P (S)



Example: SNP Data with Confounders

41



Hidden Confounders

• It might not always be known what the hidden confounders are or they cannot be

measured

• With observed data one can include as many variables as possible as inputs and hope

that the confounders are somehow represented (but never include possible effects of

a)!

42



Confounding in SNP-Analysis

• h is a confounder (family identity, population identity)

• The SNPs C1, ..., CN have a causal influence on the trait (disease) y

• The SNPs S1, ..., Ss do not have a causal influence on the trait (disease) y

• A univariate SNP analysis would have problems with confounders and the second set

of SNPs might appear to have an influence as well. A reason might be that, e.g.,

population identity leads to correlations amount SNPs

• The first solution is to do include h in the model or to do different models for different

populations/families. This can be done but typically not all confounding factors are

known or can be measured

• The state-of-the-art solution solution is to do a multivariate model with all SNPS,

thus the confounding influence of h might be blocked
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Secondary Use of Clinical Data

• If the decision law used by the doctor is known, all variables which were used by the

doctor need to be included

• This is typically a problem since not all information that is used by the doctor is

documented
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