Machine Learning and Data Mining

Summer 2015

Exercise Sheet 8

Presentation of Solutions to the Exercise Sheet on the 10.06.2015

Exercise 8-1 Human Height

Assume that the height of a human from a finite population is a Gaussian random variable:

$$
P_{\mathbf{w}}\left(\mathbf{x}_{i}\right)=\mathcal{N}\left(\mathbf{x}_{i} ; \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left(\mathbf{x}_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)
$$

For independent $\mathbf{x}_{i} \in \mathbb{R}$ from such a population $\mathbf{w}=(\mu, \sigma)^{T} \in \mathbb{R}^{2}$ holds

$$
\begin{aligned}
P_{\mathbf{w}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) & =\prod_{i=1}^{N} P_{\mathbf{w}}\left(\mathbf{x}_{i}\right)=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{x}_{i} ; \mu, \sigma^{2}\right)= \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{N}{2}}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\mu\right)^{2}\right)
\end{aligned}
$$

a) Determine the maximum likelihood estimator of $P_{\mathbf{w}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$.
b) Compute the corresponding estimators for the four height datasets in the file body_sizes.txt and visualize the respective distributions. How does the estimator reflect the understanding of the underlying data?

Exercise 8-2 Lineare Regression with Gaussian Noise

Let $D, d_{i}=\left(x_{i, 1}, \ldots, x_{i, M}, y_{i}\right)^{T}$, be a dataset of size N with M features and an output by which depends linearly on \mathbf{X}. Due to erroneous measurements the inputs the inputs are noisy, i.e.:

$$
y_{i}=x_{i}^{T} \mathbf{w}+\epsilon_{i}
$$

where ϵ_{i} is the noise of data point i. Furthermore, assume ϵ to be gaussian distributed:

$$
P\left(\epsilon_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}} \epsilon_{i}^{2}}
$$

Given the variables \mathbf{X} and the model \mathbf{w}, we can then model the distribution of \mathbf{y} as follows:

$$
P\left(y_{i} \mid x_{i}, \mathbf{w}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(y_{i}-x_{i}^{T} \mathbf{w}\right)^{2}}
$$

a) Determine the parameter $\hat{\mathbf{w}}$ which maximizes the probability of the training data $P(D \mid \mathbf{w})$, using the maximum-likelihood estimator: $\hat{\mathbf{w}}^{\mathrm{ML}}=\arg \max _{\mathbf{w}} P(D \mid \mathbf{w})$.

You may assume that the \mathbf{w} are distributed independently of the input data \mathbf{X}.
b) A common assumption for the a priori distribution of random variables is:

$$
P(\mathbf{w})=\frac{1}{\left(2 \pi \alpha^{2}\right)^{\frac{M}{2}}} e^{\left(-\frac{1}{2 \alpha^{2}} \sum_{j=0}^{M-1} w_{j}^{2}\right)}
$$

Compute the parameter $\hat{\mathbf{w}}$ which maximizes $P(\mathbf{w}) P(D \mid \mathbf{w})$. Does this give an alternative interpretation to the λ-term of the penalized least squares function (PLS)?

