Exercise 8-1 Human Height

Assume that the height of a human from a finite population is a Gaussian random variable:

\[P_w(x_i) = \mathcal{N}(x_i; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x_i - \mu)^2}{2\sigma^2} \right) \]

For independent \(x_i \in \mathbb{R} \) from such a population \(w = (\mu, \sigma)^T \in \mathbb{R}^2 \) holds

\[P_w(x_1, \ldots, x_N) = \prod_{i=1}^{N} P_w(x_i) = \prod_{i=1}^{N} \mathcal{N}(x_i; \mu, \sigma^2) = \]
\[= \frac{1}{(2\pi \sigma^2)^\frac{N}{2}} \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2 \right) \]

a) Determine the maximum likelihood estimator of \(P_w(x_1, \ldots, x_N) \).

b) Compute the corresponding estimators for the four height datasets in the file `body_sizes.txt` and visualize the respective distributions. How does the estimator reflect the understanding of the underlying data?
Possible Solution:

a)

\[l(\mu, \sigma) = \log P_w(x_1, \ldots, x_N) = \log \frac{1}{\sqrt{2\pi \sigma^2}} \sum_{i=1}^{N} (x_i - \mu)^2 \]

\[\frac{\partial l(\mu, \sigma)}{\partial \mu} = \frac{\partial}{\partial \mu} \left(-\log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2 \right) = 0 - \frac{1}{2\sigma^2} \sum_{i=1}^{N} 2 \cdot (x_i - \mu) \cdot (-1) = \frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu) = \frac{1}{\sigma^2} \left(\sum_{i=1}^{N} x_i \right) - N \cdot \mu \]

\[\frac{\partial l(\hat{\mu}^{ML}, \sigma)}{\partial \hat{\mu}^{ML}} \bigg|_0 = \hat{\mu}^{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i \]

\[\frac{\partial l(\mu, \hat{\sigma}^{ML})}{\partial \hat{\sigma}^{ML}} \bigg|_0 = N = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu}^{ML})^2 \Rightarrow (\hat{\sigma}^{ML})^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu}^{ML})^2 \]

\[\frac{\partial l(\mu, \sigma)}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left(-\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2 \right) = -\frac{N}{2} \cdot \frac{1}{2\pi\sigma^2} \cdot 4\pi\sigma - \left(\frac{1}{2} (-2) \frac{1}{\sigma^3} \sum_{i=1}^{N} (x_i - \mu)^2 \right) = -\frac{N}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{N} (x_i - \mu)^2 \]

b) All values in cm:

\[\hat{\mu}^{ML} = (161.5536, 153.7481, 154.5920) \]
\[\hat{\sigma}^{ML} = (34.67525, 35.48248, 36.18142) \]

Estimator does not really help to understand the data.
Possible Solution:

Exercise 8-2 Lineare Regression with Gaussian Noise

Let \(D_i = (x_{i1}, \ldots, x_{iM}, y_i)^T \), be a dataset of size \(N \) with \(M \) features and an output \(y \) which depends linearly on \(X \). Due to erroneous measurements the inputs the inputs are noisy, i.e.:

\[
y_i = x_i^T w + \epsilon_i,
\]

where \(\epsilon_i \) is the noise of data point \(i \). Furthermore, assume \(\epsilon \) to be gaussian distributed:

\[
P(\epsilon_i) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{1}{2\sigma^2} \epsilon_i^2}.
\]

Given the variables \(X \) and the model \(w \), we can then model the distribution of \(y \) as follows:

\[
P(y_i | x_i, w) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{1}{2\sigma^2} (y_i - x_i^T w)^2}.
\]

a) Determine the parameter \(\hat{w} \) which maximizes the probability of the training data \(P(D|w) \), using the maximum-likelihood estimator: \(\hat{w}_{\text{ML}} = \arg \max_w P(D|w) \).

You may assume that the \(w \) are distributed independently of the input data \(X \).

b) A common assumption for the a priori distribution of random variables is:

\[
P(w) = \frac{1}{(2\pi \alpha^2)^\frac{M}{2}} e^{-\frac{1}{2\alpha^2} \sum_{j=0}^{M-1} w_j^2}
\]

Compute the parameter \(\hat{w} \) which maximizes \(P(w)P(D|w) \). Does this give an alternative interpretation to the \(\lambda \)-term of the penalized least squares function (PLS)?
Possible Solution:

a) Observation: \(L(w) = P(D|w) = P(y, X|w) \). \(P(y|X, w) \) is given. We can use this by
\[
P(y, X|w) = P(y|X, w) \cdot P(X|w)
\]
We know that \(X \) is independent of \(w \), hence, \(P(X|w) = P(X) \). Thus, we have the following likelihood:
\[
L(w) = P(y|X, w) \cdot P(X) .
\]
However, we do not know \(P(X) \). We will see later on, that this is not important, as \(P(X) \) is independent of \(w \).

Also, we do not have \(P(y|X, w) \), but “only” \(P(y_i|x_i, w) \). Assuming that our samples have been drawn independently from the same distribution (i.i.d. = “independent, identically distributed”), we may write:
\[
L(w) = \prod_{i=1}^{N} P(y_i, x_i|w) = \prod_{i=1}^{N} P(y_i|x_i, w) \cdot P(x_i)
\]
\[
= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i-x_i^T w)^2} \cdot P(x_i) .
\]
which we have to derive now. Instead of deriving the product over all \((x_i, y_i) \in D\), we derive the log-likelihood, applying \(\ln(ab) = \ln a + \ln b \) (which is not the same as \(e^{a+b} = e^a \cdot e^b \)).

\[
l(w) = \ln L(w) = \ln \left(\prod_{i=1}^{N} P(y_i|x_i, w) \cdot P(x_i) \right) = \sum_{i=1}^{N} \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i-x_i^T w)^2} \cdot P(x_i) \right) =
\]
\[
= \sum_{i=1}^{N} \ln \frac{1}{\sqrt{2\pi\sigma^2}} + \sum_{i=1}^{N} \ln e^{-\frac{1}{2\sigma^2}(y_i-x_i^T w)^2} + \sum_{i=1}^{N} \ln P(x_i) =
\]
\[
n\ln \frac{1}{\sqrt{2\pi\sigma^2}} + \sum_{i=1}^{N} \ln e^{-\frac{1}{2\sigma^2}(y_i-x_i^T w)^2} + \sum_{i=1}^{N} \ln P(x_i) =
\]
\[
= \frac{N}{2} \ln 2\pi\sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - x_i^T w)^2 + \sum_{i=1}^{N} \ln P(x_i) .
\]

\[
\frac{\partial l(w)}{\partial w} = -\frac{1}{2\sigma^2} \sum_{i=1}^{N} (-x_i) \cdot 2 \cdot (y_i - x_i^T w) =
\]
\[
= \frac{1}{\sigma^2} \sum_{i=4}^{N} x_i \cdot \underbrace{(y_i - x_i^T w)}_{1 \times 1}
\]

b.w.
Possible Solution:

We set this term equal to 0.

\[\frac{\partial l(\hat{w}^{\text{ML}})}{\partial \hat{w}^{\text{ML}}} = 0 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \frac{1}{\sigma^2} \begin{pmatrix} X^T \\ y - \hat{w}^{\text{ML}} \end{pmatrix}_{M \times N}^{N \times 1} \]

\[\Leftrightarrow 0 = X^T y - X^T \hat{w}^{\text{ML}} \]

\[\Leftrightarrow X^T \hat{w}^{\text{ML}} = X^T y \]

\[\Leftrightarrow \hat{w}^{\text{ML}} = (X^T X)^{-1} X^T y \]

This is exactly the solution of the Least Squares (LS) method.

Alternatively directly by matrix solution:

\[L(w) = P(X) \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} (y - Xw)^2} = \]

\[= P(X) \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} (y^T - Xw)^T (y - Xw)} = \]

\[= P(X) \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} (y^T y - 2w^T X^T y - y^T Xw + w^T X^T Xw)} = \]

\[\text{Derivative:} \]

\[\frac{\partial l(w)}{\partial w} = \frac{\partial \ln L(w)}{\partial w} = -\frac{1}{2\sigma^2} (0 - 2X^T y + 2X^T Xw) = \]

\[= \frac{1}{\sigma^2} (X^T y - X^T Xw) \]

Rest is as before
Possible Solution:

b) We are looking for \(\hat{w}_{\text{ML}} \) für \(L(w) = P(w) P(D|w) = P(w) P(y|X, w) P(X) = \hat{w}_{\text{MAP}} \), the maximum-a-posteriori estimator.

Log-Likelihood:

\[
l(w) = \ln L(w) = \ln P(w) + \ln P(y|X, w) + \ln P(X) = \\
= \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} w^T w} \right) + \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} (y^T y - 2w^T X^T y + w^T X^T X w)} \right) + \ln P(X) = \\
= \ln \frac{1}{\sqrt{2\pi\alpha^2}} w^T w + \ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} (y^T y - 2w^T X^T y + w^T X^T X w) + \ln P(X) .
\]

Derivative:

\[
\frac{\partial l(w)}{\partial w} = -\frac{1}{2\alpha^2} 2w - \frac{1}{2\sigma^2} (-2X^T y + 2X^T X w) = \\
= -\frac{1}{\alpha^2} w + \frac{1}{\sigma^2} (X^T y - X^T X w)
\]

Set equal to 0:

\[
\frac{\partial l(\hat{w}_{\text{MAP}})}{\partial \hat{w}_{\text{MAP}}} = 0 \\
0 = \frac{1}{\sigma^2} X^T y - \frac{1}{\sigma^2} X^T X \hat{w}_{\text{MAP}} - \frac{1}{\alpha^2} \hat{w}_{\text{MAP}} \\
\frac{1}{\sigma^2} X^T X \hat{w}_{\text{MAP}} + \frac{1}{\alpha^2} \hat{w}_{\text{MAP}} = \frac{1}{\sigma^2} X^T y \\
\left(\frac{1}{\sigma^2} X^T X + \frac{1}{\alpha^2} I \right) \hat{w}_{\text{MAP}} = \frac{1}{\sigma^2} X^T y
\]

The MAP estimator corresponds to the model of the regularized cost function where \(\lambda = \frac{\sigma^2}{\alpha^2} \). The noisy model is thereby a special case of the regularized cost function.

Recall:

\(\hat{w}_{\text{pen}} = (X^T X + \lambda I)^{-1} X^T y \), wobei \(\text{cost}_{\text{pen}}(w) = \sum_{i=1}^{N} (y_i - f(x_i, w))^2 + \lambda \sum_{i=0}^{M-1} w_i^2 \).