Prof. Dr. Volker Tresp
Gregor Jossé
Johannes Niedermayer

Machine Learning and Data Mining

Summer 2015

Exercise Sheet 4

Presentation of Solutions to the Exercise Sheet on the 20.05.2015

Exercise 4-1 Neural Network

Consider the following neural network. It models the game result between two teams D and T, depending on the inputs "self-confidence of team D " (S), "antagonizing power of players of team T " (A) and "efficiency of team $D "(E)$. The hidden neurons model the positive (P) and negative (N) actions of team D.

\mathbf{x}_{i}
Z
$\hat{\mathbf{y}}_{i}$
The output neurons D and T are estimated as follows:

$$
\begin{aligned}
\hat{y}_{i, k} & =f\left(\mathbf{x}_{i}, \mathbf{w}, \mathbf{v}\right)_{k}=\sum_{h=1}^{M_{\phi}} w_{k, h} \phi_{h}\left(\mathbf{x}_{i}, \mathbf{v}_{h}\right) \\
J_{N}(\mathbf{w}, \mathbf{v}) & =\sum_{k=1}^{2} \sum_{i=1}^{N}\left(y_{i, k}-f\left(\mathbf{x}_{i}, \mathbf{w}, \mathbf{v}\right)_{k}\right)^{2}
\end{aligned}
$$

The activation function is:

$$
z_{h}\left(\mathbf{x}_{i}\right)=\phi_{h}\left(\mathbf{x}_{i}, \mathbf{v}_{h}\right)=\frac{1}{1+\exp \left(-\sum_{j=1}^{M} v_{h, j} x_{i, j}\right)}
$$

The gradient descent for a pattern \mathbf{x}_{i} is defined as:

$$
\begin{aligned}
w_{k, h} & \leftarrow w_{k, h}+\eta z_{h}\left(\mathbf{x}_{i}\right)\left(y_{i, k}-f\left(\mathbf{x}_{i}, \mathbf{w}, \mathbf{v}\right)_{k}\right) \text { and } \\
v_{h, j} & \leftarrow v_{h, j}+\eta \sum_{k=1}^{2} w_{k, h} z_{h}\left(\mathbf{x}_{i}\right)\left(1-z_{h}\left(\mathbf{x}_{i}\right)\right) x_{i, j}\left(y_{i, k}-f\left(\mathbf{x}_{i}, \mathbf{w}, \mathbf{v}\right)_{k}\right)
\end{aligned}
$$

Consider the already trained neural network:

(a) Compute the prediction $\hat{\mathbf{y}}_{i}=\binom{D}{T}$ for the input vector $\mathbf{x}_{i}=\left(\begin{array}{c}S \\ A \\ E\end{array}\right)=\left(\begin{array}{c}-5 \\ 7 \\ 3\end{array}\right)$ up to the second decimal.

Possible Solution:

$$
\begin{aligned}
P & =z_{1}=\phi_{h}\left(\mathbf{x}_{i}, \mathbf{v}_{1}\right)=\frac{1}{1+\exp \left(-\sum_{j=1}^{M} v_{1, j} x_{i, j}\right)} \\
& =\frac{1}{1+\exp (25-28-12)}=\frac{1}{1+\exp (-15)} \approx 1.00 \\
N & =z_{2}=\phi_{h}\left(\mathbf{x}_{i}, \mathbf{v}_{2}\right)=\frac{1}{1+\exp (-15+7+6)}=\frac{1}{1+\exp (-2)} \approx 0.88 \\
\hat{y}_{i, 1} & =D=f\left(\mathbf{x}_{i}, \mathbf{w}, \mathbf{v}\right)_{1}=\sum_{h=1}^{2} w_{1, h} \phi_{h}\left(\mathbf{x}_{i}, \mathbf{v}_{h}\right)_{1}=5 \cdot 1-2 \cdot 0.88=3.24 \\
\hat{y}_{i, 2} & =T=f\left(\mathbf{x}_{i}, \mathbf{w}, \mathbf{v}\right)_{2}=-2 \cdot 1+5 \cdot 0.88=2.40
\end{aligned}
$$

(b) Use the result from (a) and

$$
\mathbf{w}_{k, h}=\mathbf{w}_{k, h}+\eta \frac{\partial J_{N}(\mathbf{w}, \mathbf{v})}{\partial w_{k, h}}
$$

to conduct one part of the update step of the backpropagation algorithm for the value $\mathbf{y}_{i}=\binom{3}{2}$. Use a step size of $\eta=0.5$.

Possible Solution:

$$
\begin{aligned}
& y_{i, 1}-f\left(\mathbf{x}_{i}, \mathbf{w}, \mathbf{v}\right)_{1}=3-3.24=-0.24 \\
& y_{i, 2}-f\left(\mathbf{x}_{i}, \mathbf{w}, \mathbf{v}\right)_{2}=2-2.40=-0.40 \\
& w_{k, h} \leftarrow w_{k, h}+\eta z_{h}\left(\mathbf{x}_{i}\right)\left(y_{i, k}-f\left(\mathbf{x}_{i}, \mathbf{w}, \mathbf{v}\right)_{k}\right) \\
& w_{1,1} \leftarrow 5+0.5 \cdot 1.00 \cdot(-0.24)=4.88 \\
& w_{1,2} \leftarrow-2+0.5 \cdot 0.88 \cdot(-0.24)=-2.1056 \\
& w_{2,1} \leftarrow-2+0.5 \cdot 1.00 \cdot(-0.40)=-2.2 \\
& w_{2,2} \leftarrow 5+0.5 \cdot 0.88 \cdot(-0.40)=4.824
\end{aligned}
$$

