Exercise 11-1 Document Distance

Consider four documents from a document dataset, which has been mapped onto a lexicon of size $M = 100$ w.r.t. word frequency $x_{i,j} \in \{1, 2, \ldots \}$.

Let A denote the lexicon itself, i.e. $\forall j \in \{1, \ldots, M\}: x_{A,j} = 1$. Let B be a document containing only the first word of A ($x_{B,1} = 1$ \land $\forall j \in \{2, \ldots, M\}: x_{B,j} = 0$). Let C contain the first 50 words of A, and, finally, let D contain the 11th to 60th word twice.

a) Compute the pairwise distance of vectors A, B, C, D, w.r.t. the following distance measures:

$$
\text{dist}_{\text{eucl}}(x, y) = \left(\sum_{i=1}^{M} (x_j - Y_j)^2 \right)^{1/2}
$$

$$
\text{dist}_{\text{simple}}(x, y) = \frac{1}{M} \sum_{i=1}^{M} \left(1 - I(x_j = y_j) \right)
$$

$$
\text{dist}_{\text{simple00}}(x, y) = \frac{1}{M - F} \sum_{i=1}^{M} \left(1 - I(x_j = y_j) \right)
$$

$$
\text{dist}_{\text{cos}}(x, y) = 1 - \frac{x^T y}{\|x\| \|y\|}
$$

$$
\text{dist}_{\text{pearson}}(x, y) = 1 - \frac{\tilde{x}^T \tilde{y}}{\|\tilde{x}\| \|\tilde{y}\|}
$$

where $I(\text{condition})$ is the indicator function which is 1 iff the condition is fulfilled and 0 otherwise, F is the number of components in which both vectors are 0, and $\tilde{x} := x - \text{mean}(x)$.

b) How do the distances change if it is also known that the first fifty words are contained in 750 of the total $N = 1000$ documents in the set, while all other words only appear in 5 documents? Remark: You know the “term frequency”, which measures the absolute frequency of words in a document. When there is additional information about the global frequency of a term (i.e., is it common or rare among all documents), it should also be taken into account. This is often done using the inverse document frequency:

$$
\text{idf}_j = \log \left(\frac{N}{n_j} \right)
$$

where N is the number of documents and n_j is the number of documents in which the word j occurs.

The measures tf and idf are often combined by multiplication: $\text{tfidf} = \text{tf} \cdot \text{idf}$. What does this measure reflect? Use this measure for this exercise.