Prof. Dr. Volker Tresp
Gregor Jossé
Johannes Niedermayer

Machine Learning and Data Mining

Summer 2015
Solutions to Exercise Sheet 1

Exercise 1-3 Boolean Function as Perceptron

Consider the boolean function or (V) for two binary inputs.

- b) Given the above picture, guess weights for a perceptron (with outputs 0 and 1) such that the perceptron is a classifier for the v function. Instead of using the sign function, as in the lecture, use the Heaviside function f for classification:

$$
f(x)= \begin{cases}1 & x \geq 0 \\ 0 & x<0\end{cases}
$$

Possible Solution:

Intercept and gradient can easily be guessed from the illustration. For example, $1 / 2$ und -1 qualify as a solution, respectively.
The equation of the hyperplane is:

$$
h=w_{0}+w_{1} x_{1}+w_{2} x_{2}
$$

For $h=0$, we obtain $0=w_{0}+w_{1} x_{1}+w_{2} x_{2}$. Brought into the form of the equation of a straight line:

$$
x_{2}=-w_{0} / w_{2}-\left(w_{1} / w_{2}\right) x_{2} .
$$

If we set $w_{2}=1$, then $w_{0}=-1 / 2$ and $w_{1}=-1$ parametrize the above line. Damit ist $w=$ $(-1 / 2,-1,1)$.

- c) Initialize the weight vector as $w=(0,0,0)$ and learn the right weights employing the algorithm of the lecture and a learning rate $\eta=0.2$. Use the following learning rule:

$$
w_{i} \leftarrow w_{i}+\eta \cdot\left(y_{j}-\hat{y}_{j}\right) x_{i, j}
$$

. Start training vector x_{3} and proceed with increasing index (in contrast to the principle of random sampling).

Possible Solution:

sample (pattern)	y_{i}	weight update
x_{3}	$f\left(x_{3}^{T} w\right)=f(0)=1$	-
x_{0}	$f\left(x_{0}^{T} w\right)=1$	$w_{0} \leftarrow 0-0.2 \cdot 1=-0.2, w_{1}=0, w_{2}=0$
x_{1}	$f\left(x_{1}^{T} w\right)=0$	$w_{0} \leftarrow-0.2+0.2 \cdot 1=0, w_{1}=0, w_{2} \leftarrow 0+0.2 \cdot 1=0.2$
x_{2}	$f\left(x_{2}^{T} w\right)=1$	-
x_{3}	$f\left(x_{3}^{T} w\right)=1$	-
x_{0}	$f\left(x_{0}^{T} w\right)=1$	$w_{0} \leftarrow 0-0.2 \cdot 1=-0.2, w_{1}=0, w_{2}=0.2$
x_{1}	$f\left(x_{1}^{T} w\right)=1$	-
x_{2}	$f\left(x_{2}^{T} w\right)=0$	$w_{0} \leftarrow-0.2+0.2 \cdot 1=0, w_{1}=0.2, w_{2}=0.2$
x_{3}	$f\left(x_{3}^{T} w\right)=1$	-
x_{0}	$f\left(x_{0}^{T} w\right)=1$	$w_{0} \leftarrow 0-0.2 \cdot 1=-0.2, w_{1}=0.2, w_{2}=0.2$
x_{1}	$f\left(x_{1}^{T} w\right)=1$	-
x_{2}	$f\left(x_{2}^{T} w\right)=1$	-
x_{3}	$f\left(x_{3}^{T} w\right)=1$	-
x_{0}	$f\left(x_{0}^{T} w\right)=0$	-

