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Bayes Nets for Relational Learning

• Consider the Chest Clinic Example: Let’s assume that Jack’s father is in the database

and that he is a smoker. This should influence the prior probability of Jack being a

smoker

• Now let’s assume that we do not know if Jack’s father is a smoker but that his other

children are smokers. This can be seen as positive evidence that Jack’s father is a

smoker and thus that Jack is a smoker as well

• We will see that by considering binary relations such as fatherOf or friendOf we can get

dependencies between nodes of potentially all patients, their friends and relatives: we

cannot treat each patient independently of the others! Technically, the whole observed

world becomes one data point
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A Hierarchy of Bayes Nets

• Relationships are naturally being considered in first-order logic (FOL) and in relational

databases (RDBs)

• Let’s look at three relational complexities:

– A propositional Bayes net

– A Bayes net with unary relations/predicates (the classical learning scenario)

– A Bayes net with binary (or higher-order) relations/predicates
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I. Propositional Bayesian Nets

• The simplest case is a propositional Bayesian network

• Example: Holmes Network

• Nodes in a propositional Bayesian network represent atomic propositions as Alarm,

WatsonCalls, DaughterCalls

• Closely related to propositional logic (PL)
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II. Template Bayes Nets with Unary Predicates

• This is a typical Bayes net used in applications

• A Bayesian network does not only make statements about a single person (Jack) but

about a whole set of entities (all patients); a Bayesian network is a template

• Example:

∀z. P (bronchitis(z)|smoker(z)) = θbron,t

where t ∈ {0,1} indicates if smoker(z) is true or false

• Jack, John, ... are constants (e.g., objects, entities)

• z is a variable that represents constants (here: Jack, John ...)

• ∀ (for all) is a quantifier; the other one is ∃ (there is)

• smoker is a predicate and smoker(z) is an atom

• We call bronchitis(z) the head and smoker(z) the body of the probabilistic rule
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Rules with more than one Input

• Example:

∀z. P (dyspnea(z)|toc(z), bronchitis(z)) = θdyspnea,t1,t2

where t1, t2 ∈ {0,1} indicates if the corresponding terms in the body are true or

false
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Ground Bayes Net

• All possible ground atoms together with the probabilistic dependencies (directed links,

quantifications of dependencies) derived from the template Bayesian network form

a propositional Bayesian network, called the ground Bayesian network ; in particular,

there are no variables in the ground Bayes net
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Possible World

• X is now the set of all ground atoms that can be formed by all known constants (here:

all patients) and all predicates

• X = x assigns truth values to each ground atom and is called a possible world

(Herbrand interpretation). Thus X = x defines a complete training data set

• Each ground atom becomes a node in a Bayes net. With N constants and Mu unary

predicates, there are NMu ground atoms / nodes

• With only unary predicates, a world can be displayed as a binary matrix with entities

as rows and unary relations as columns

• In Bayes Nets with only unary predicates, the ground Bayes net decomposes into

independent Bayes nets, e.g., one for each patient. Under some assumptions, each

patient might be interpreted as defining an independent data point
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III. Bayes Nets with Binary and Unary Predicates

• Binary predicates represent relationships between entities: example: fatherOf(z, y) In

the convention we are using the first argument is the subject and the second one the

object

• Again: X is the set of all ground atoms that can be formed by all known constants and

all predicates. But note that atoms can now have two arguments, e.g., fatherOf(John,

Jack)

• In a possible world we obtain NMu+N2Mb ground atoms, where Mb is the number

of binary relations

• For binary predicates binary relations are introduced

• A possible world can be represented as a tensor (3-way array)
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Probabilistic Rules with Binary Predicates

• Smoking of ones father is predictive:

∀z. P (smoker(z)|∃t.fatherOf(t, z) ∧ smoker(t)) = θsmoker,t

• Smoking of ones father is predictive and smoking of at least one friend is predictive:

∀z. P (smoker(z)|∃t.fatherOf(t, z)∧ smoker(t), ∃u.friendOf(u, z)∧ smoker(u))

= θsmoker,t1,t2

• friendOf predicts likes

∀z.∀t. P (likes(z, t)|friendsOf(t, z)) = θlikes,t
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Type Constrains

• One needs to apply constraints such that there is only one rule applied to each head
ground atom and that no loops in the ground Bayes net occurs

• Often the first constraint is implemented as a type constraint, leading to typed predi-
cates

• The probabilistic smoker rule is only applied to patients

∀z.patient(z) : P (smoker(z)|∃fatherOf(t, z) ∧ smoker(t)) = θsmoker,t

• The probabilistic headacheMedicationrule is only applied to medication

∀z.medication(z) : P (headacheMedication(z)|containsAspirin(z)) = θheadacheMedication,t

• As an alternative (e.g., in Bayesian Logic Programming) one permits several probabi-
listic rules for a given head ground atom, and one then uses a form of a combination
rule (e.g., Noisy-Or) (note that in logic programming the combination rule is very
simple: if one rule “fires” and proofs the head to be true, then the head is true, no
matter if the other rules fire)
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Triple Graphs

• The training data is represented as a set of unary and binary tables (relations)

• Alternatively we write a ground atom as a <subject, predicate, object> triple, for

example fatherOf(John, Jack) becomes <Jack, fatherOf, John> and form a graph

where entities are nodes and a triple is represented as a directed link between subject

and object. The link is labelled by the predicate

• The resulting graph is called a triple graph. Knowledge graphs (DBpedia, Yago, Free-

base, Google Knowledge Graph) are special triple graphs. Another example is the RDF

(resource description framework) graph used in the linked open data (LOD) cloud

• But don’t confuse the triple graph with the ground Bayes net: The nodes of the Bayes

net would correspond to the links in the triple graph!
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Probabilistic Inference in Bayes Nets with Binary Relations

• Situation: the truth values of some ground atoms are unknown

• Recall that inference might propagate information in the whole ground Bayes net

• Exact inference is typically not feasible

• Usually, some form of approximate inference is used (loopy belief propagation, MCMC,

mean field inference)
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Missing Entities, Predicates, and New Worlds

• Important entities might be missing (Jack’s father is not in the knowledge base)?

• Important predicates are missing?

• How can we apply an existing model to a new world?

• All these issues can be important in a particular application!
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Parameter Learning

• Learning the θ-parameters with complete data is easy

• With missing information some form of EM-learning can be applied
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Structural Learning

• In addition to the usual issues in structural learning, we are faced with the problem of

searching for interesting candidate bodies

• The next figures shows two learned relational structures using the PRM formalism
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Connection to Logics

• If we replace the probabilistic rules by deterministic ones we obtain logic programming

and rule-based systems; logical constraints are also used in knowledge representation.

• A general logic framework is defined by first-order logic (FOL) where general logical

expressions are used (not just rules)
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Relational Learning

• Machine learning for deterministic or close-to deterministic domains: Inductive Logic

Programming (ILP), Inductive Databases, Inductive Reasoning

• Probabilistic Databases deal with the representation and querying of uncertain facts

• Learning with probabilistic relational domains: Probabilistic Relational Model (PRM),

Probabilistic Entity-Relationshop Models (PER), Plate models, Markov Logic (ML),

Stochastic Logic Programs, Bayesian Logic Programming, Relational Dependency Net-

works
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Concluding Remarks

• Relational Learning permits the application of machine learning to databases and

knowledge representations

• So far the success in applications was limited: Markov Logic is the most popular

approach being used

• Alternative approaches build simple generative models from raw data (Infinite Hidden

Relational Models, RESCAL) and are quite promising

• RESCAL is build on a joint factorization of the relational matrix and the relational

tensor and is used for learning with knowledge graphs (DBpedia, Google Knowledge

Graph)
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