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Frequentist Statistics



Natural science attempts to find regularities and rules in nature
F = ma
The laws are valid under idealized conditions. Example: Fall of a point object without

air friction, with velocities much smaller than the speed of light

There might be measurement errors, but there is an underlying true (simple) depen-

dency

This motivates the frequentist statistics: derivation of probabilistic statements under

repeatable experiments under identical conditions
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Repeated experiments with an underlying linear dependency



Thus a statistical analysis requires a precise description of the experiment. For example,

the details on who gets which medication (randomized?)

A statistical unit is an object, on which measurements are executed (attributes are
registered). Could be a person. A statistical unit defines a row in the data matrix, the

attributes define the columns

The population is the conceptual set of all statistical units about which we want to

perform statistical inference. Example: diabetics

For the analysis, only a sample is available (training data). Often it is assumes that

the sample is a random subset of the population



e A population can be finite, infinite, or hypothetic

e Example: all people who vote in an election



The sample is a random subset of the population
For each statistical unit ¢ in the sample, we determine the attributes (features) x;

Assuming a random sample, we can write (in a finite sample, we would assume samp-

ling with replacement)

N
P(x1,...xy) = || P(x:)
1=1

The probability that | sample N units with attributes x1, ..., Xy is the product of

the probabilities of observing individual units with their individual attributes



P(x;) is unknown

Assumption in parametric modelling: The data has been generated by a probability
distribution Py (X;), which is parameterized by the parameter vector w. For example,

we might assume a Gaussian distribution with unknown mean but known variance.

Thus we assume that for at least one parameter vector w

Pw(x;) = P(x;)

The goal is to estimate the parameter vector



e We assume that the height x; is Gaussian distributed with unknown mean and variance

Pu(xi) = N (xi: 11, 02) = Jlrexp( L e m?)

with w = (p, 0)?

e Thus we get
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How can we define and find the best parameters?



We consider the probability of the observed data as a function of the parameters.
This is the likelihood-function, where we assume that data points where generated
independently

N
L(w) = Pw(x1,...xy) = || Pw(x)
1=1

It is often more convenient to work with the log-likelihood,

N

I(w) =log L(w) =}  log Pw(x;)
1=1

The maximum likelihood (ML) estimator is given by

W, = arg max(li(w))

This means: in the family of distributions under considerations, the ML estimator is
the one which explains the data the best



® [he ML estimators are

and
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e Let assume that the true dependency is linear, but we only have available noisy target

measurements

T
Yi =X; Wt €

e Let's further assume that the noise is Gaussian distributed

P(e;) = 1 o 1 2
i _\/27702 ’ 202€i

e |t follows that

_ 1 1 T \2
Pw (yi|x;) = Wexp <—?ﬂ(yi — X; W) )

e |t is easier to deal with the log

1
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l0og Pw(y;|x;) = ~5 log(2mo?) —
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e The log-likelihood function is then
N
__N 2 1 S T )2

e Under the assumption of independent additive noise, the ML estimator is the same as

the LS estimator

Wi = arg max(i(w)) = wrgs

Since, W,y = arg max[— ", (y; — x}w)?] and Wy, = argmin[>_.(y; —

x; w)?]
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Certainly the ML estimator makes sense (best fit). But how certain are we about

the estimates. Maybe there are parameter values that would give us almost the same
likelihood?

To analyse the ML estimate we do the following thought experiment (see next slide)
Let o be the unknown but fixed parameter

In addition to the available sample we are able to generate additional samples D1, D>, ... Dy,
L — oo, each of size N

For each of these D;, we estimate the parameter and obtain ji; (for example, using
the ML-estimator)

WE analyse the distribution of the estimated parameter

In the example, We get for the mean person height (with known o2)

_ _ 0?
PM(M—M)—N(N—M,O,W>
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e The interpretation of probability here is: averaged of all D1, D>, ... Dy,

e We can calculate this distribution without knowing the particular data set (although
| need 02)

e Assuming, we estimate it from the available sample, we can answer the question: how

probable is it to measure i if the true value is © = 175cm?



The frequentist

experiment
Datamean
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e The difference between the true parameter and the expected value of the parameter

estimate (averaged over many data sets of size V) is called the bias

Bias(w) = Ep(W) — Werye

Here,
L

. .1 .
ED(’UJ)Z lim ZZwlDZ

L—
=1

In the example, the bias is zero.
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e [he ML-estimator can be biased with finite data

ml — Z(Xz N)Q

~D 2
Ounbiased — _1 Z(XZ 'u)
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® [ he variance indicates how much an estimator varies around its mean

Var(w) = Ep (@ — Ep(0))?

L

- . 1 N N

Var(d) = lim =% (%|D; — Ep(®))*
1=1

e In the example: Var(®) = 02/N
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For finite N

The ML estmator can

L Far(w)

T (w|w)

have a finite bias w  Ex(w)
Bias(w)
For N > =
P(w|w)
The ML estimator 1s
unbiased
Ep(w)=w Bias(w)— 0

ST 0




e The expected mean squared error evaluates the deviation of the estimator from the
true parameter

MSE(ZD) = Lkp ({0 — wtrue)z

L
- . 1 N
MSE(’LU) = L“—>mooz E 1 (w|Dz — wtrue)Q
1=

e The expected mean squared error is the sum of the variance and the square of the

bias

MSE(®) = Varp(w) + Bias% ()
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Proof:
MSE(®) = Ep (# — wirye)® = Ep [(# — Ep(©)) — (wirue — Ep(@))]?
= Ep (& — Ep(®))? + Ep (Wirue — Ep ()

—2Ep [(@ — Ep(®)) (wirue — Ep(@))] = Varp(®) + Biash (@) + 0

The cross term is zero since

Ep [(w — Ep(w))(wtruye — Ep(w))] =

(wirue — Ep(w))Ep(w — Ep(w)) =0
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An estimator is unbiased, if Bias(w) = 0
An estimator is asymptotically unbiased, if Bias(w) = O, for N — oo

An estimator is MSE consistent, if we have

MSE(’(D)N_MO — 0

An estimator w ist MSE-effective, if

MSE[®] < MSE[@] V@
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The ML-estimator has many desirable properties:

e The ML-estimator is asymptotically N — oo unbiased (although with a finite sample

size it might be biases)

e Maybe surprisingly, the ML estimator is asymptotically (N — oo) MSE-efficient

among all unbiased estimators

e Asymptotically, the estimator is Gaussian distributed, even when the noise is not!
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e In particular for complex models it might be difficult to derive the sampling distribution,

for example the distribution of the ML parameter estimate

e Recall that ideally we would have many training sets of the same size available, fit the

model, and observe the distribution of the parameter estimates

e Proxies for the new data sets of the same size [N can be generated surprisingly simple:
A new data set can be generated by sampling N times from the original data with

replacement
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e For hypothesis testing and the derivation of error bounds, please consult your favorite

statistics book.
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e The likelihood can be calculated even for complex models models (e.g., models with
latent variables)

e With the assumption that the data haven been generated independently, the log-

likelihood is the sum over the log likelihoods of individual data points

N
I(w) = ) 10g P(y;|w)
1=1
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The necessity to emulate the data generating process leads to interesting problem

specific models

A certain problem: One needs to assume that the true model is (approximately) in the

class of the models under considerations.

With finite data, the ML estimator can lead to over fitting: more complex models will
have a higher likelihood

The frequentist statistics has a strong focus in the analysis of the properties of para-

meter estimates
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Bayesian Statistics
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In a frequentist setting, the parameters are fixed but unknown and the data are gene-

rated by a random process

In a Bayesian approach, also the parameters have been generated by a random process

This means we need an a priori distribution

P(w)

The we obtain a complete probabilistic model

P(w)P(D|w)

... and can calculate the posterior parameter distribution using Bayes' formula as

P(w|D) =

P(D|w)P(w)

P(D)
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Let's assume that the height of all German males of age 20 follows a Gaussian distri-

bution

Now you measure the height of a male German person with some Gaussian measure-

ment noise

An ML estimate of this person’s height would be 0 = =, Var(w) = o

P(w) = N(w; u, a?)

P(z|lw) = N(x; w, 2)

The Bayesian would say that

P(w|z) =

P(afw) P(w) _
P(x)

2
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e In the previous example, even a frequentist might agree that the Bayesian solution

makes sense

e The Bayesian approach goes further: Even if P(w) was not available from prior

measurements, the user must specify a P(w) according to the user’s prior belief!

e As if your money (or life) would depend on it!
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e Does it make sense to assume a personal P(w)?

e Cox (1946): If one is willing to assign numbers to ones personal beliefs, then one

arrives, under few consistent conditions, at the Bayesian formalism
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In contrast to the frequentist experiment, we only work with the actual data D and

do not need to assume that additional hypothetical data sets can be generated

One assume that the true parameter o has been generated from the prior distribution

P() in one experiment. In the example: P(1) = N (u; 0, a?)
The data are generated from P(D|u), in the example P(D|p) = [ [, N (z;; 1, 2)

Applying Bayes' formula | get the a posteriori distribution

P(DIW)P() _ [ . mean -

by ;
P(D) 1_|_]\?_§2 N + 02/a?

P(u|D) =
- _ N
with mean = 1/N ) .1 x;
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The Bayesian experiment
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e [he Bayesian approach gives you the complete a posteriori parameter distribution
e One can derive a maximum a posteriori estimator as,

Wimap = arg max(P(w|D))

In the example,
mean

2
1+ Naz

[N AP=

e Note, that the MAP estimator converges to the ML estimator, for N — oo
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e Assume, that the true dependency is linear but that we only measure noisy target data

T
Yi = X; W+ €

We get (same as in the frequentist approach)

_ 1 1 T \2
P(yi|w) — WGXD <—?(yz — X, W) )
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A convenient a priori assumption is that

M-—1
_ 1
P(w) = (2ma?) M/2 exp -5 > w?
1=0

We give smaller parameters a higher a priori probability

Ockhams razor: simple explanations should be preferred

2

We will assume that the hyperparameters o< and a? are known. If they are unknown,

one can define prior distributions for those. The analysis becomes more involved
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e Using the likelihood-function and the prior parameter distribution, we can apply Bayes'

formula and obtain the a posteriori distribution

P(w)P(D|w)
P(D)

P(w|D) =

34



M—1
P P(D 1 1
P(w|D) = (w)P(D]w) x exp | ——= wz-2 — —
P(D) 202 252
7=0
P(w|D) = N (W; Wmap, cov(w|D))
With

and covariance

2 —1
o

2 —1
cov(w|D) = o2 (XTX + 0—21)
!
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e The most probable parameter value, after observing the data, is (the maximum a
posteriori (MAP) estimate)

Wimap = arg max(P(w|D)) = Wpey,
_ 2
with A = %.

e One sees that despite different experimental assumptions the frequentist ML estimate
and the Bayesian MAP estimate are very similar. The ML estimate corresponds to the

LS-solution and the MAP estimate corresponds to the PLS solution
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e An important difference between is prediction. In a frequentist solution one substitutes
T
)

prediction. In a Bayesian approach one applies the rules of probability and marginalizes

the parameter estimate y; = X: W,,,;, and one can calculate the variance in the

(integrates over) the parameters

e With
P(y,wlz, D) = P(w|D)P(y|w,x)

it follows that

P(uix. D) = [ P(w|D)P(ylw. x)dw
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e The a posteriori predictive distribution becomes

P(yix.D) = [ P(ylw.x)P(w|D)dw

=N (y\ X Fmap, x! éov(w|D) x + 02)
and is Gaussian distributed with mean XTvAvmap and variance XTcov(w|D)X + o2

e The variance on the prediction considers both the noise on the prediction as well as

the uncertainty in the parameters (by integrating over possible values)

e This is an essential advantage of the Bayesian approach: one considers all plausible

parameter values and, e.g., one can also consider all local optima in the integral

e This is also the main technical challenge: for the Bayesian solution complex integrals

need to be solved or approximated
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Personal belief is formulated as a probability distribution; a mechanism for
Consistent approach for various kinds of modeling uncertainty

For basic distributions (Gaussian, Poisson, Dirichlet, ...) which belong to the exponen-
tial family of distributions, closed form solutions for the complete Bayesian approach

are available!

For more complex models, a predictive analysis leads to integrals which often cannot

be solved analytically
Special approximations: Monte-Carlo integration, evidence framework)

The simplest approximation is

P(uix.D) = [ P(slw. x)P(w|D)dw ~ P(ylx, Winay)
which means that one uses a MAP point estimate
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