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Approach

• Natural science attempts to find regularities and rules in nature

F = ma

• The laws are valid under idealized conditions. Example: Fall of a point object without

air friction, with velocities much smaller than the speed of light

• There might be measurement errors, but there is an underlying true (simple) depen-

dency

• This motivates the frequentist statistics: derivation of probabilistic statements under

repeatable experiments under identical conditions
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Basic Terms

• Thus a statistical analysis requires a precise description of the experiment. For example,

the details on who gets which medication (randomized?)

• A statistical unit is an object, on which measurements are executed (attributes are

registered). Could be a person. A statistical unit defines a row in the data matrix, the

attributes define the columns

• The population is the conceptual set of all statistical units about which we want to

perform statistical inference. Example: diabetics

• For the analysis, only a sample is available (training data). Often it is assumes that

the sample is a random subset of the population
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Population

• A population can be finite, infinite, or hypothetic

• Example: all people who vote in an election
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Typical Assumption

• The sample is a random subset of the population

• For each statistical unit i in the sample, we determine the attributes (features) xi

• Assuming a random sample, we can write (in a finite sample, we would assume samp-

ling with replacement)

P (x1, ...,xN) =
N∏
i=1

P (xi)

• The probability that I sample N units with attributes x1, ...,xN is the product of

the probabilities of observing individual units with their individual attributes
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Modelling

• P (xi) is unknown

• Assumption in parametric modelling: The data has been generated by a probability

distribution Pw(xi), which is parameterized by the parameter vector w. For example,

we might assume a Gaussian distribution with unknown mean but known variance.

• Thus we assume that for at least one parameter vector w

Pw(xi) ≈ P (xi)

• The goal is to estimate the parameter vector
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Example: a Person’s Height

• We assume that the height xi is Gaussian distributed with unknown mean and variance

Pw(xi) = N (xi;µ, σ
2) =

1

σ
√
2π

exp

(
−

1

2σ2
(xi − µ)2

)
with w = (µ, σ)T

• Thus we get

Pw(x1, ...,xN) =
N∏
i=1

Pw(xi) =
N∏
i=1

N (xi;µ, σ
2)

=
1

(2πσ2)N/2
exp

− 1

2σ2

N∑
i=1

(xi − µ)2

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Maximum Likelihood

• We consider the probability of the observed data as a function of the parameters.
This is the likelihood-function, where we assume that data points where generated
independently

L(w) = Pw(x1, ...,xN) =
N∏
i=1

Pw(xi)

• It is often more convenient to work with the log-likelihood,

l(w) = logL(w) =
N∑
i=1

logPw(xi)

• The maximum likelihood (ML) estimator is given by

ŵml
.
= argmax(l(w))

• This means: in the family of distributions under considerations, the ML estimator is
the one which explains the data the best
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ML-estimator for Person’s Height

• The ML estimators are

µ̂ =
1

N

N∑
i=1

xi

and

σ̂2 =
1

N

N∑
i=1

(xi − µ̂)2
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ML-Estimator for a Linear Model

• Let’ assume that the true dependency is linear, but we only have available noisy target

measurements

yi = xTi w+ εi

• Let’s further assume that the noise is Gaussian distributed

P (εi) =
1√
2πσ2

exp

(
−

1

2σ2
ε2i

)
• It follows that

Pw(yi|xi) =
1√
2πσ2

exp

(
−

1

2σ2
(yi − xTi w)2

)
• It is easier to deal with the log

logPw(yi|xi) = −
1

2
log(2πσ2)−

1

2σ2
(yi − xTi w)2
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ML Estimator

• The log-likelihood function is then

l = −
N

2
log(2πσ2)−

1

2σ2

N∑
i=1

(yi − xTi w)2

• Under the assumption of independent additive noise, the ML estimator is the same as

the LS estimator

ŵml
.
= argmax(l(w)) = ŵLS

Since, ŵml = argmax[−
∑
i(yi − xTi w)2] and ŵls = argmin[

∑
i(yi −

xTi w)2]
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Analysis of Estimators

• Certainly the ML estimator makes sense (best fit). But how certain are we about

the estimates. Maybe there are parameter values that would give us almost the same

likelihood?

• To analyse the ML estimate we do the following thought experiment (see next slide)

• Let µ be the unknown but fixed parameter

• In addition to the available sample we are able to generate additional samplesD1, D2, . . . DL,

L→∞, each of size N

• For each of these Di, we estimate the parameter and obtain µ̂i (for example, using

the ML-estimator)

• WE analyse the distribution of the estimated parameter

• In the example, We get for the mean person height (with known σ2)

Pµ(µ̂− µ) = N
(
µ̂− µ; 0,

σ2

N

)
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• The interpretation of probability here is: averaged of all D1, D2, . . . DL

• We can calculate this distribution without knowing the particular data set (although

I need σ2)

• Assuming, we estimate µ̂ from the available sample, we can answer the question: how

probable is it to measure µ̂ if the true value is µ = 175cm?





Bias of an Estimator

• The difference between the true parameter and the expected value of the parameter

estimate (averaged over many data sets of size N) is called the bias

Bias(ŵ) = ED(ŵ)− wtrue

Here,

ED(ŵ) = lim
L→∞

1

L

L∑
i=1

ŵ|Di

In the example, the bias is zero.
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The ML-Estimator can be Biased with finite Data

• The ML-estimator can be biased with finite data

σ̂2ml =
1

N

N∑
i=1

(xi − µ̂)2

σ̂2unbiased =
1

N − 1

N∑
i=1

(xi − µ̂)2
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Variance of an Estimator

• The variance indicates how much an estimator varies around its mean

V ar(ŵ) = ED (ŵ − ED(ŵ))2

V ar(ŵ) = lim
L→∞

1

L

L∑
i=1

(ŵ|Di − ED(ŵ))2

• In the example: V ar(ŵ) = σ2/N
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Expected Error

• The expected mean squared error evaluates the deviation of the estimator from the

true parameter

MSE(ŵ) = ED (ŵ − wtrue)2

MSE(ŵ) = lim
L→∞

1

L

L∑
i=1

(ŵ|Di − wtrue)2

• The expected mean squared error is the sum of the variance and the square of the

bias

MSE(ŵ) = V arD(ŵ) +Bias2D(ŵ)
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Expected Error (cont’d)

Proof:

MSE(ŵ) = ED (ŵ − wtrue)2 = ED [(ŵ − ED(ŵ))− (wtrue − ED(ŵ))]2

= ED (ŵ − ED(ŵ))2 + ED (wtrue − ED(ŵ))2

−2ED [(ŵ − ED(ŵ))(wtrue − ED(ŵ))] = V arD(ŵ) +Bias2D(ŵ) + 0

The cross term is zero since

ED [(ŵ − ED(ŵ))(wtrue − ED(ŵ))] =

(wtrue − ED(ŵ))ED(ŵ − ED(ŵ)) = 0
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Desirable Properties of Estimators

• An estimator is unbiased, if Bias(ŵ) = 0

• An estimator is asymptotically unbiased, if Bias(ŵ) = 0, for N →∞

• An estimator is MSE consistent, if we have

MSE(ŵ)N→∞ → 0

• An estimator ŵ ist MSE-effective, if

MSE[ŵ] ≤MSE[w̃] ∀ŵ
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Properties of the ML-Estimator

The ML-estimator has many desirable properties:

• The ML-estimator is asymptoticallyN →∞ unbiased (although with a finite sample

size it might be biases)

• Maybe surprisingly, the ML estimator is asymptotically (N → ∞) MSE-efficient

among all unbiased estimators

• Asymptotically, the estimator is Gaussian distributed, even when the noise is not!
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Estimating the Variance via Bootstrap

• In particular for complex models it might be difficult to derive the sampling distribution,

for example the distribution of the ML parameter estimate

• Recall that ideally we would have many training sets of the same size available, fit the

model, and observe the distribution of the parameter estimates

• Proxies for the new data sets of the same size N can be generated surprisingly simple:

A new data set can be generated by sampling N times from the original data with

replacement
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Classical Statistical Inference

• For hypothesis testing and the derivation of error bounds, please consult your favorite

statistics book.
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Discussion: ML

• The likelihood can be calculated even for complex models models (e.g., models with

latent variables)

• With the assumption that the data haven been generated independently, the log-

likelihood is the sum over the log likelihoods of individual data points

l(w) =
N∑
i=1

logP (yi|w)
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Discussion: ML (cont’d)

• The necessity to emulate the data generating process leads to interesting problem

specific models

• A certain problem: One needs to assume that the true model is (approximately) in the

class of the models under considerations.

• With finite data, the ML estimator can lead to over fitting: more complex models will

have a higher likelihood

• The frequentist statistics has a strong focus in the analysis of the properties of para-

meter estimates
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Bayesian Statistics
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The Bayesian Approach

• In a frequentist setting, the parameters are fixed but unknown and the data are gene-

rated by a random process

• In a Bayesian approach, also the parameters have been generated by a random process

• This means we need an a priori distribution

P (w)

• The we obtain a complete probabilistic model

P (w)P (D|w)

• ... and can calculate the posterior parameter distribution using Bayes’ formula as

P (w|D) =
P (D|w)P (w)

P (D)
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An Example

• Let’s assume that the height of all German males of age 20 follows a Gaussian distri-

bution

P (w) = N(w;µ, α2)

• Now you measure the height of a male German person with some Gaussian measure-

ment noise

P (x|w) = N(x;w, σ2)

• An ML estimate of this person’s height would be ŵ = x, V ar(ŵ) = σ2

• The Bayesian would say that

P (w|x) =
P (x|w)P (w)

P (x)
= N

w; x+ σ2

α2
µ

1+ σ2

α2

,
σ2

1+ σ2

α2


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Prior Distribution

• In the previous example, even a frequentist might agree that the Bayesian solution

makes sense

• The Bayesian approach goes further: Even if P (w) was not available from prior

measurements, the user must specify a P (w) according to the user’s prior belief!

• As if your money (or life) would depend on it!
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The Prior

• Does it make sense to assume a personal P (w)?

• Cox (1946): If one is willing to assign numbers to ones personal beliefs, then one

arrives, under few consistent conditions, at the Bayesian formalism
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The Bayesian Experiment

• In contrast to the frequentist experiment, we only work with the actual data D and

do not need to assume that additional hypothetical data sets can be generated

• One assume that the true parameter µ has been generated from the prior distribution

P (µ) in one experiment. In the example: P (µ) = N (µ; 0, α2)

• The data are generated from P (D|µ), in the example P (D|µ) =
∏
iN (xi;µ, σ

2)

• Applying Bayes’ formula I get the a posteriori distribution

P (µ|D) =
P (D|µ)P (µ)

P (D)
= N

µ; mean

1+ σ2

Nα2

,
σ2

N + σ2/α2


with mean = 1/N

∑N
i=1 xi
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Analysis

• The Bayesian approach gives you the complete a posteriori parameter distribution

• One can derive a maximum a posteriori estimator as,

ŵmap
.
= argmax(P (w|D))

In the example,

µ̂MAP=
mean

1+ σ2

Nα2

• Note, that the MAP estimator converges to the ML estimator, for N →∞
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Our Favorite Example: Linear Regression

• Assume, that the true dependency is linear but that we only measure noisy target data

yi = xTi w+ εi

We get (same as in the frequentist approach)

P (yi|w) =
1√
2πσ2

exp

(
−

1

2σ2
(yi − xTi w)2

)
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Linear Regression: a priori Assumption

• A convenient a priori assumption is that

P (w) = (2πα2)−M/2 exp

− 1

2α2

M−1∑
i=0

w2
i


• We give smaller parameters a higher a priori probability

• Ockhams razor: simple explanations should be preferred

• We will assume that the hyperparameters σ2 and α2 are known. If they are unknown,

one can define prior distributions for those. The analysis becomes more involved
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Linear Regression: the a posteriori Distribution

• Using the likelihood-function and the prior parameter distribution, we can apply Bayes’

formula and obtain the a posteriori distribution

P (w|D) =
P (w)P (D|w)

P (D)

34



Linear Regression: Calculating the a posteriori Distribution

P (w|D) =
P (w)P (D|w)

P (D)
∝ exp

− 1

2α2

M−1∑
j=0

w2
i −

1

2σ2

N∑
i=1

(yi − xTi w)2


P (w|D) = N (w;wmap, cov(w|D))

With

wmap =

(
XTX+

σ2

α2
I

)−1
XTy

and covariance

cov(w|D) = σ2
(
XTX+

σ2

α2
I

)−1
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Linear Regression: the MAP estimate and the PLS-solution

• The most probable parameter value, after observing the data, is (the maximum a

posteriori (MAP) estimate)

ŵmap
.
= argmax(P (w|D)) = ŵPen

with λ = σ2

α2
.

• One sees that despite different experimental assumptions the frequentist ML estimate

and the Bayesian MAP estimate are very similar. The ML estimate corresponds to the

LS-solution and the MAP estimate corresponds to the PLS solution
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Bayesian Prediction with Linear Regression

• An important difference between is prediction. In a frequentist solution one substitutes

the parameter estimate ŷi = xTi wml, and one can calculate the variance in the

prediction. In a Bayesian approach one applies the rules of probability and marginalizes

(integrates over) the parameters

• With

P (y,w|x,D) = P (w|D)P (y|w,x)

it follows that

P (y|x, D) =

∫
P (w|D)P (y|w,x)dw
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Predictive Distribution for a Linear Model

• The a posteriori predictive distribution becomes

P (y|x, D) =

∫
P (y|w,x)P (w|D)dw

= N
(
y| xT ŵmap, xT ĉov(w|D) x+ σ2

)
and is Gaussian distributed with mean xT ŵmap and variance xT cov(w|D)x+σ2

• The variance on the prediction considers both the noise on the prediction as well as

the uncertainty in the parameters (by integrating over possible values)

• This is an essential advantage of the Bayesian approach: one considers all plausible

parameter values and, e.g., one can also consider all local optima in the integral

• This is also the main technical challenge: for the Bayesian solution complex integrals

need to be solved or approximated
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Discussion: the Bayesian Solution

• Personal belief is formulated as a probability distribution; a mechanism for

• Consistent approach for various kinds of modeling uncertainty

• For basic distributions (Gaussian, Poisson, Dirichlet, ...) which belong to the exponen-

tial family of distributions, closed form solutions for the complete Bayesian approach

are available!

• For more complex models, a predictive analysis leads to integrals which often cannot

be solved analytically

• Special approximations: Monte-Carlo integration, evidence framework)

• The simplest approximation is

P (y|x, D) =

∫
P (y|w,x)P (w|D)dw ≈ P (y|x,wmap)

which means that one uses a MAP point estimate

39


