Machine Learning and Data Mining Summer 2014 Exercise Sheet 4

Presentation of Solutions to the Exercise Sheet on the 22.05.2014

Aufgabe 4-1Soccer Ball PCA

The Caltech 101 dataset consists of more than 9000 images which have each been assigned to one out of 102 classes. We consider down-scaled images ((32×32) -thumbnails) taken from the classes soccer ball and faces easy.

- a) Conduct a PCA on the 64 soccer ball images. Can the images be reconstructed losslessly with only part of the principal components?
- b) Now consider the faces easy dataset, consisting of 435 image. Can this dataset be adequately reconstructed using the principal components from part a)?
- c) Now consider the dataset of part a) and the principal components of the dataset of part b). Does reconstructing the soccer balls from the faces' components work?

Aufgabe 4-2 Probability Calculus

Let X and Y be random variables with the following data:

		Y		
		1	2	3
Х	1	0,1	0,15	0,25
	2	0,05	0,3	0,15

Compute

- a) the marginal distributions $P(X = x_i)$ and $P(Y = y_i)$
- b) the expectancy values E(X), E(Y)
- c) the variances var(X), var(Y) as well as the covariance cov(X,Y).

d) the correlation $\rho = \frac{cov(X,Y)}{\sqrt{var(X) \cdot var(Y)}}$

e) if the variables X, Y are independent.

Aufgabe 4-3 Interpretation of the Standard Deviation

Sketch the graph of the standardized normal distribution with the following parameters $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$; mit $\mu = 0$ und $\sigma = 1$ in the intervall $x \in [-4, 4]$. Mark and integret the intervalls $0 \pm \sigma$; $0 \pm 2\sigma$; $0 \pm 3\sigma$

1

Aufgabe 4-4 Kernelcombinations

In order to use an own kernel $k(\mathbf{x}_i, \mathbf{x}_j)$ für $\mathbf{x}_i, \mathbf{x}_j \in \mathbb{R}^n$, it must be shown that it is indeed a legitimate kernel. It can be quite complex to show that the *Mercer Theorem* holds for k. Therefore, often the explicit mapping of the implicit basis transformations is stated: $k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$.

Another popular method of showing the validity of a kernel is representing a kernel, $k(\mathbf{x}_i, \mathbf{x}_j) = k_1(\mathbf{x}_i, \mathbf{x}_j) \circ k_2(\mathbf{x}_i, \mathbf{x}_j)$, as a combination of legitimate kernels combined through valid basis operations.

Show that for valid kernel $k_l(\mathbf{x}_i, \mathbf{x}_j)$, where $l \in \mathbb{N}_+$, holds:

a) Scaling: For a > 0: $k(\mathbf{x}_i, \mathbf{x}_j) := a \cdot k_1(\mathbf{x}_i, \mathbf{x}_j)$ is a kernel. b) Sum: $k(\mathbf{x}_i, \mathbf{x}_j) := k_1(\mathbf{x}_i, \mathbf{x}_j) + k_2(\mathbf{x}_i, \mathbf{x}_j)$ is a kernel. c) Linear combination: For $w \in \mathbb{R}^d_+$: $k(\mathbf{x}_i, \mathbf{x}_j) := \sum_{l=1}^d w_l \cdot k_l(\mathbf{x}_i, \mathbf{x}_j)$ is a kernel. d) Product: $k(\mathbf{x}_i, \mathbf{x}_j) := k_1(\mathbf{x}_i, \mathbf{x}_j) \cdot k_2(\mathbf{x}_i, \mathbf{x}_j)$ is a kernel. e) Power: For a $p \in \mathbb{N}_+$: $k(\mathbf{x}_i, \mathbf{x}_j) := (k_1(\mathbf{x}_i, \mathbf{x}_j))^p$ is a kernel.