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Aufgabe 7-1 Model Comparison

Compare the models of regression and basis functions. Let the prediction for a data point x; € R be given as:
Mg
Foxiw) = woi(x)
j=1

Employ the PLS-solution w = (®7® + \I) " &Ty mit ®; ; = ¢;(x;) = x/*. The following dataset X, y of
size N = 10 with variance 02 = 0.25 is given:

X[03 04 08 15 1.8 36 4 43 46 5
y | 7 47 06 -11 -03 46 55 57 3.1 -0.3

We want to find the optimal model with basis functions Mg € {1,...,6}. Employ the mean squared error
(MSE) as loss-function.

a) Find the best model using cross-validation (5 and 10 times). Do the pairwise tests introduced in the lecture
support the decision of the MSE? What influence does the A-parameter have?

b) Which result do the frequentistic (C), statistic and AIC) and the bayesian approach produce?

¢) Which influence does the data size N have, if you were to simulate a comparable data set with N =
{100,1000}?



Losungsvorschlag:

Keep in mind: We optimize the possible models M;, not weight vectors!

N

MSE(X,W) = %Z(f(xza ) YZ)

i=1

lambda =0

model
dim 1
dim2
dim3
dim4
dim &
dim&

7

a) Small reminder about Cross-Validation (CV):

1
J’;Fest(Mi) = MSE(X(k),w) = N Z (f (x4,w) — y;)?
k ieTest (X,k)

where the k-fold holds Ny, objects.

Note that the lecture notes denote J,;FeSt(Mi) by costies,, [W | traing,M;], we use the first
option for reasons of brevity.

Remember:

mean(M Z Test Z (f(xi;w) —yi)°

zeTest (X,k)

Mx

K
\//Er(mean(/\/li)) Z Test — mean(M,))”
k:l

We restrict ourselves to the 10-fold CV, because its fragmentation is unique. In contrast, the
non-unique 5-fold CV fragmentations yield variable results, which are — when averaged —
slightly worse than the 10-fold results.

First, we consider the unregularized case, where A\ = 0.

My 1 2 3 4 5 6
mean(M;) 9.79 12.69 19.51 0.66 1.21 3.48
Var(mean(M;)) 2.17 3.07 7.62 0.20 0.34 2.85




Losungsvorschlag:

zu a): Pairwise testing: M better than M, if

mean(M,) + Var(mean(M,)) < mean(M;) + \//gr(mean(/\/lj))

My 1 2 3

1 F F

2 F F
Test if standard deviations overlap: 3 F F

4 T T T

5 T T T

6 T T T

K
1
MeanDiff; ; = E (J,;FeSt(Mi
k=1

4 5 6
F F F
F F F
F F F

T F
F F
F F

)= I (M)

K
My 1 2 3 4 5
2 2.9
Test if standard deviations overlap: i _3; _ 153 _18.8

5 -86 —-11.5 —183 0.5
6 -6.3 -9.2 -16.0 2.8 2.3

Mgy 1 2 3 4 5
0.980
0.905 0.848

Pairwise T-tests w.r.t. MSE :

[ I SV I \S)

0.001 0.002 0.018
0.002 0.002 0.019 0.969

6 0.047 0.015 0.006 0.820 0.785

Reminder (?) regarding idea of the pairwise T-test: Compute pairwise differences between in-
put vectors and test if the expected value of these differences complies with some hypothesis.
In our case that hypothesis is: “M; is better than M;”, i.e. “the errors that M; produces are
smaller than the errors M produces, i.e. “MSE;— MSE; < 0”.
This hypothesis is tested by means of the gaussian distribution (P-value = probability that

P(X <= avg(MSE; — MSE;)).

= the best model w.r.t. all quality measures is Mg = 4, i.e. the basis transformation

(1, z, 22, 23).

. . . . . 2 .
Now let us investigate the influece of different A (Reminder: A = % where a=variance of w):

A = .01: stabilizes Mg > 4; all other models are degraded.

A = .05: as above but with a stronger effect: now, Mg = 5 is the best model.

A = .25: as above, still Mg = 5 is the best model..

In no case are the globally best results better than those without regularization.




Losungsvorschlag:

b) Now, we refrain from splitting into trainings- and testset, but rely on the application of frequentist
and bayesian measures.
Mallot’s Cp statistic (Slide 37): JIain 4 oMg2 o MiN jTrain My
& Lt (f(xiaw) — i)
Akaikes Information Criterion (AIC, Slide 43): AIC = U%C’ P
Bayesian Information Criterion (BIC): BIC = N - AIC — 2 M + M log N, because:

=

g

BIC (SL. 52) = —2 log L + M log N

N
N-AIC=-2logL+2M+ MlogN — Mlog N
= BIC = N - AIC — 2 M + M log N

1 M
AIC(SL36):2<—N10gL+) |- N+ Mlog N

My 1 2 3 4 ) 6

JTrain 793 793 748 025 024 0.11
Results: Cp 11.90 14.73 17.46 0.76 0.97 0.65

AIC 74.60 58.92 69.85 3.03 3.89 2.59

BIC 746.6 590.1 699.7 31.8 40.7 28.0
= Cp prefers Mg = 6 over 4, i.e. a polynomial of degree 5. AIC and BIC continue along
with this recommendation.
However, with the slightest regularization (A = 0.01), Mg = 4 is favored again, because even
small regularization terms have big impact on the training error of complex models. Stronger
regularization (A > 0.05) shifts the decision in the direction of more complex models.

c) N € {100,1000}: y=(1—z)-(2—=z) - (b —x)

lambda = 0 lambda=0
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= Better approximation to the original model (grey lines).




Losungsvorschlag:

zu ¢) The insights from CV are practically the same, however, the P-values are significantly better.
N = 1000 is superior to N = 100 (and worse than N = 10000).

Without CV: Training error is almost the same for Mg >= 4, = 4 is favored. The same goes
for regularization, where also Mg = 4 is favored.

Generally: The bigger IV, the smaller the test errors, but the bigger the training errors.
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Concludingly: N1 4 1
M7 1 T




