Machine Learning and Data Mining Summer 2014 Exercise Sheet 7

Presentation of Solutions to the Exercise Sheet on the 26.06.2014

Aufgabe 7-1 Model Comparison

Compare the models of regression and basis functions. Let the prediction for a data point $x_i \in \mathbb{R}$ be given as:

$$f(\mathbf{x}_i, \mathbf{w}) = \sum_{j=1}^{M_{\Phi}} w_j \phi_j(\mathbf{x}_i)$$

Employ the PLS-solution $\hat{\mathbf{w}} = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T \mathbf{y}$ mit $\Phi_{i,j} = \phi_j(\mathbf{x}_i) = \mathbf{x}_i^{j-1}$. The following dataset \mathbf{X}, \mathbf{y} of size N = 10 with variance $\sigma^2 = 0.25$ is given:

We want to find the optimal model with basis functions $M_{\Phi} \in \{1, \ldots, 6\}$. Employ the mean squared error (MSE) as loss-function.

- a) Find the best model using cross-validation (5 and 10 times). Do the pairwise tests introduced in the lecture support the decision of the MSE? What influence does the λ -parameter have?
- b) Which result do the frequentistic (C_p statistic and AIC) and the bayesian approach produce?
- c) Which influence does the data size N have, if you were to simulate a comparable data set with $N = \{100, 1000\}$?

Keep in mind: We optimize the possible models \mathcal{M}_i , not weight vectors!

$$MSE(\mathbf{X}, \mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (f(\mathbf{x}_i, \mathbf{w}) - \mathbf{y}_i)^2$$

a) Small reminder about Cross-Validation (CV):

$$J_k^{\text{Test}}(\mathcal{M}_i) = \text{MSE}(\mathbf{X}(k), \mathbf{w}) = \frac{1}{N_k} \sum_{i \in \text{Test} (\mathbf{X}, k)} (f(\mathbf{x}_i, \mathbf{w}) - \mathbf{y}_i)^2$$

where the k-fold holds N_k objects.

Note that the lecture notes denote $J_k^{\text{Test}}(\mathcal{M}_i)$ by $\text{cost}_{\text{test}_k}[\hat{w} \mid \text{train}_k, \mathcal{M}_i]$, we use the first option for reasons of brevity.

Remember:

$$\begin{aligned} \mathbf{mean}(\mathcal{M}_i) &= \frac{1}{K} \sum_{k=1}^K J_k^{\text{Test}}(\mathcal{M}_i) = \frac{1}{K} \sum_{k=1}^K \frac{1}{N_k} \sum_{i \in \text{Test } (\mathbf{X}, k)} (f(\mathbf{x}_i, \mathbf{w}) - \mathbf{y}_i)^2 \\ \widehat{\text{Var}}(\mathbf{mean}(\mathcal{M}_i)) &= \frac{1}{K(K-1)} \sum_{k=1}^K (J_k^{\text{Test}}(\mathcal{M}_i) - \mathbf{mean}(\mathcal{M}_i))^2 \end{aligned}$$

We restrict ourselves to the 10-fold CV, because its fragmentation is unique. In contrast, the non-unique 5-fold CV fragmentations yield variable results, which are – when averaged – slightly worse than the 10-fold results.

First, we consider the unregularized case, where $\lambda = 0$.

M_{Φ}	1	2	3	4	5	6
$\operatorname{mean}(\mathcal{M}_i)$	9.79	12.69	19.51	0.66	1.21	3.48
$\widehat{\operatorname{Var}}(\operatorname{mean}(\mathcal{M}_i))$	2.17	3.07	7.62	0.20	0.34	2.85

zu a): Pairwise testing: \mathcal{M}_i better than \mathcal{M}_j , if	
$\mathbf{mean}(\mathcal{M}_i) + \widehat{\mathrm{Var}}(\mathbf{mean}(\mathcal{M}_i)) < \mathbf{mean}(\mathcal{M}_i) + \widehat{\mathrm{Var}}(\mathbf{mean}(\mathcal{M}_i))$))

Test if standard deviations overlap:	M_{Φ} 1 2 3 4 5 6	1 F T T T	2 F T T T	3 F F T T	4 F F F F	5 F F T T	6 F F F F					
$\text{MeanDiff}_{i,j} = \frac{1}{K} \sum_{k=1}^{K} \left(J_k^{\text{Test}}(\mathcal{M}_i) - J_k^{\text{Test}}(\mathcal{M}_j) \right)$												
Test if standard deviations overlap:			N 2 3 4 5	M_{Φ}	2 9 -9 -8	1 2.9).7).1 3.6	-12 -11	2 5.8 2.0 1.5	-18 -18	3 3.8 3.3	4 0.5	5
Pairwise T-tests w.r.t. MSE :		1 2 3 4 5 6	M_{Φ}	0.9 0.9 0.0 0.0 0.0	-6 1 980 905 901 902 947	5.3 0.8 0.0 0.0	-9 2 848 002 002 015	9.2 0.0 0.0 0.0	-16 3 18 19 06	5.0 0.90 0.82	2.8 4 69 20	2.3 5 0.785

Reminder (?) regarding idea of the pairwise T-test: Compute pairwise differences between input vectors and test if the expected value of these differences complies with some hypothesis. In our case that hypothesis is: " \mathcal{M}_i is better than \mathcal{M}_j ", i.e. "the errors that \mathcal{M}_i produces are smaller than the errors \mathcal{M}_j produces, i.e. " $MSE_i - MSE_j < 0$ ".

This hypothesis is tested by means of the gaussian distribution (P-value = probability that $P(X \le avg(MSE_i - MSE_j))$).

 \Rightarrow the best model w.r.t. all quality measures is $M_{\Phi} = 4$, i.e. the basis transformation $(1, x, x^2, x^3)$.

Now let us investigate the influece of different λ (Reminder: $\lambda = \frac{\sigma^2}{\alpha^2}$ where α =variance of w):

 $\lambda = .01$: stabilizes $M_{\Phi} > 4$; all other models are degraded.

 $\lambda = .05$: as above but with a stronger effect: now, $M_{\Phi} = 5$ is the best model.

 $\lambda = .25$: as above, still $M_{\Phi} = 5$ is the best model..

In no case are the globally best results better than those without regularization.

b) Now, we refrain from splitting into trainings- and testset, but rely on the application of frequentist and bayesian measures.

Mallot's C_P statistic (Slide 37): $J^{\text{Train}} + 2\frac{M}{N}\sigma^2 \approx \frac{M+N}{N-M}J^{\text{Train}} = \frac{M+N}{N-M} \cdot \frac{1}{N}\sum_{i=1}^{N} (f(\mathbf{x}_i, \mathbf{w}) - \mathbf{y}_i)^2$

Akaikes Information Criterion (AIC, Slide 43): AIC = $\frac{1}{\sigma^2}C_P$

Bayesian Information Criterion (BIC): BIC = $N \cdot AIC - 2M + M \log N$, because:

BIC (Sl. 52) = -2 log $L + M \log N$ AIC (Sl. 36) = 2 $\left(-\frac{1}{N}\log L + \frac{M}{N}\right)$ | $\cdot N \pm M \log N$ $N \cdot AIC = -2 \log L + 2 M + M \log N - M \log N$ \Rightarrow BIC = $N \cdot AIC - 2 M + M \log N$

Results:	M_{Φ}	1	2	3	4	5	6
	J^{Train}	7.93	7.93	7.48	0.25	0.24	0.11
	C_P	11.90	14.73	17.46	0.76	0.97	0.65
	AIC	74.60	58.92	69.85	3.03	3.89	2.59
	BIC	746.6	590.1	699.7	31.8	40.7	28.0

 $\Rightarrow C_P$ prefers $M_{\Phi} = 6$ over 4, i.e. a polynomial of degree 5. AIC and BIC continue along with this recommendation.

However, with the slightest regularization ($\lambda = 0.01$), $M_{\Phi} = 4$ is favored again, because even small regularization terms have big impact on the training error of complex models. Stronger regularization ($\lambda > 0.05$) shifts the decision in the direction of more complex models.

c)
$$N \in \{100, 1000\}$$
: $y = (1 - x) \cdot (2 - x) \cdot (5 - x)$

zu c) The insights from CV are practically the same, however, the P-values are significantly better. N = 1000 is superior to N = 100 (and worse than N = 10000).

Without CV: Training error is almost the same for $M_{\Phi} >= 4$, $\Rightarrow 4$ is favored. The same goes for regularization, where also $M_{\Phi} = 4$ is favored.

Generally: The bigger N, the smaller the test errors, but the bigger the training errors.

