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Aufgabe 7-1 Model Comparison

Compare the models of regression and basis functions. Let the prediction for a data point xi ∈ R be given as:

f(xi,w) =

MΦ∑
j=1

wjφj(xi)

Employ the PLS-solution ŵ =
(
ΦTΦ + λI

)−1
ΦTy mit Φi,j = φj(xi) = xj−1

i . The following dataset X,y of
size N = 10 with variance σ2 = 0.25 is given:

X 0.3 0.4 0.8 1.5 1.8 3.6 4 4.3 4.6 5

y 7 4.7 0.6 −1.1 −0.3 4.6 5.5 5.7 3.1 −0.3

We want to find the optimal model with basis functions MΦ ∈ {1, . . . ,6}. Employ the mean squared error
(MSE) as loss-function.

a) Find the best model using cross-validation (5 and 10 times). Do the pairwise tests introduced in the lecture
support the decision of the MSE? What influence does the λ-parameter have?

b) Which result do the frequentistic (Cp statistic and AIC) and the bayesian approach produce?

c) Which influence does the data size N have, if you were to simulate a comparable data set with N =
{100, 1000}?
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Lösungsvorschlag:

Keep in mind: We optimize the possible modelsMi, not weight vectors!

MSE(X,w) =
1

N

N∑
i=1

(f(xi,w)− yi)
2

a) Small reminder about Cross-Validation (CV):

JTest
k (Mi) = MSE(X(k),w) =

1

Nk

∑
i∈Test (X,k)

(f(xi,w)− yi)
2

where the k-fold holds Nk objects.
Note that the lecture notes denote JTest

k (Mi) by costtestk [ŵ | traink,Mi], we use the first
option for reasons of brevity.
Remember:

mean(Mi) =
1

K

K∑
k=1

JTest
k (Mi) =

1

K

K∑
k=1

1

Nk

∑
i∈Test (X,k)

(f(xi,w)− yi)
2

V̂ar(mean(Mi)) =
1

K(K − 1)

K∑
k=1

(JTest
k (Mi)−mean(Mi))

2

We restrict ourselves to the 10-fold CV, because its fragmentation is unique. In contrast, the
non-unique 5-fold CV fragmentations yield variable results, which are – when averaged –
slightly worse than the 10-fold results.

First, we consider the unregularized case, where λ = 0.

MΦ 1 2 3 4 5 6
mean(Mi) 9.79 12.69 19.51 0.66 1.21 3.48

V̂ar(mean(Mi)) 2.17 3.07 7.62 0.20 0.34 2.85
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Lösungsvorschlag:

zu a): Pairwise testing:Mi better thanMj , if

mean(Mi) + V̂ar(mean(Mi)) < mean(Mj) + V̂ar(mean(Mj))

Test if standard deviations overlap:

MΦ 1 2 3 4 5 6
1 F F F F F
2 F F F F F
3 F F F F F
4 T T T T F
5 T T T F F
6 T T T F F

MeanDiffi,j =
1

K

K∑
k=1

(
JTest
k (Mi)− JTest

k (Mj)
)

Test if standard deviations overlap:

MΦ 1 2 3 4 5
2 2.9
3 9.7 6.8
4 −9.1 −12.0 −18.8
5 −8.6 −11.5 −18.3 0.5
6 −6.3 −9.2 −16.0 2.8 2.3

Pairwise T-tests w.r.t. MSE :

MΦ 1 2 3 4 5
2 0.980
3 0.905 0.848
4 0.001 0.002 0.018
5 0.002 0.002 0.019 0.969
6 0.047 0.015 0.006 0.820 0.785

Reminder (?) regarding idea of the pairwise T-test: Compute pairwise differences between in-
put vectors and test if the expected value of these differences complies with some hypothesis.
In our case that hypothesis is: “Mi is better thanMj”, i.e. “the errors thatMi produces are
smaller than the errorsMj produces, i.e. “MSEi−MSEj < 0”.
This hypothesis is tested by means of the gaussian distribution (P-value = probability that
P (X <= avg(MSEi −MSEj)).

⇒ the best model w.r.t. all quality measures is MΦ = 4, i.e. the basis transformation
(1, x, x2, x3).

Now let us investigate the influece of different λ (Reminder: λ = σ2

α2 where α=variance of w):

λ = .01: stabilizes MΦ > 4; all other models are degraded.

λ = .05: as above but with a stronger effect: now, MΦ = 5 is the best model.

λ = .25: as above, still MΦ = 5 is the best model..

In no case are the globally best results better than those without regularization.
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Lösungsvorschlag:

b) Now, we refrain from splitting into trainings- and testset, but rely on the application of frequentist
and bayesian measures.

Mallot’s CP statistic (Slide 37): JTrain + 2MN σ
2 ≈ M+N

N−M J
Train = M+N

N−M ·
1
N

∑N
i=1(f(xi,w)− yi)

2

Akaikes Information Criterion (AIC, Slide 43): AIC = 1
σ2CP

Bayesian Information Criterion (BIC): BIC = N · AIC− 2 M +M logN , because:

BIC (Sl. 52) = −2 logL+M logN

AIC (Sl. 36) = 2

(
− 1

N
logL+

M

N

)
| ·N ±M logN

N · AIC = −2 logL+ 2 M +M logN −M logN

⇒ BIC = N · AIC− 2 M +M logN

Results:

MΦ 1 2 3 4 5 6

JTrain 7.93 7.93 7.48 0.25 0.24 0.11
CP 11.90 14.73 17.46 0.76 0.97 0.65
AIC 74.60 58.92 69.85 3.03 3.89 2.59
BIC 746.6 590.1 699.7 31.8 40.7 28.0

⇒ CP prefers MΦ = 6 over 4, i.e. a polynomial of degree 5. AIC and BIC continue along
with this recommendation.

However, with the slightest regularization (λ = 0.01),MΦ = 4 is favored again, because even
small regularization terms have big impact on the training error of complex models. Stronger
regularization (λ > 0.05) shifts the decision in the direction of more complex models.

c) N ∈ {100, 1000}: y = (1− x) · (2− x) · (5− x)

⇒ Better approximation to the original model (grey lines).
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Lösungsvorschlag:

zu c) The insights from CV are practically the same, however, the P-values are significantly better.
N = 1000 is superior to N = 100 (and worse than N = 10000).

Without CV: Training error is almost the same for MΦ >= 4,⇒ 4 is favored. The same goes
for regularization, where also MΦ = 4 is favored.

Generally: The bigger N , the smaller the test errors, but the bigger the training errors.

Concludingly:
JTrain JTest

N ↑ ↑ ↓
M ↑ ↓ ↑
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