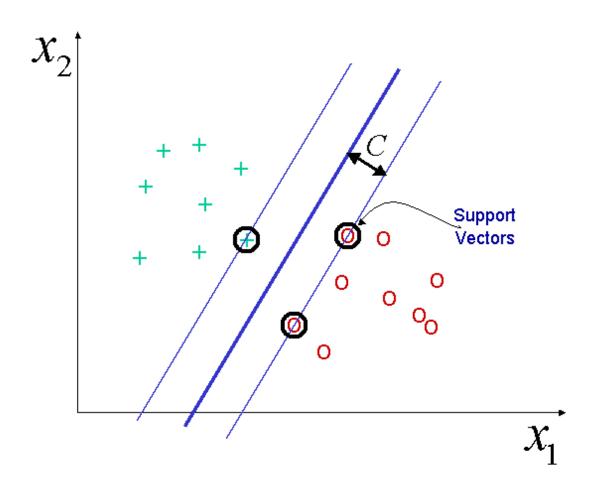
Optimal Separating Hyperplane and the Support Vector Machine

Volker Tresp

(Vapnik's) Optimal Separating Hyperplane)

- ullet Let's consider a linear classifier with $y_i \in \{-1,1\}$
- If classes are linearly separable, the separating plane can be found
- ullet Among all all solutions one chooses the one that maximizes the margin ${\mathcal C}$

Optimal Separating Hyperplane(2D)



Cost Function with Constraints

• Thus we want to find a classifier

$$\hat{y}_i = \operatorname{sign}(h_i)$$

with

$$h_i = \sum_{j=0}^{M-1} w_j x_{i,j}$$

• The following inequality constraints need to be fulfilled at the solution

$$y_i h_i > 1$$
 $i = 1, ..., N$

• Of all possible solutions, one chooses the one that maximizes the margin.

$$\mathbf{w}_{opt} = \arg\min_{\mathbf{w}} \tilde{\mathbf{w}}^T \tilde{\mathbf{w}} = \arg\min_{\mathbf{w}} \sum_{j=1}^{M-1} w_j^2$$

where $\tilde{\mathbf{w}}=(w_1,\ldots,w_{M-1})$. (this means that in $\tilde{\mathbf{w}}$ the offset w_0 is missing); $y_i\in\{-1,1\}$.

ullet The minimization is with respect to the complete ${f w}$

Margin and Support-Vectors

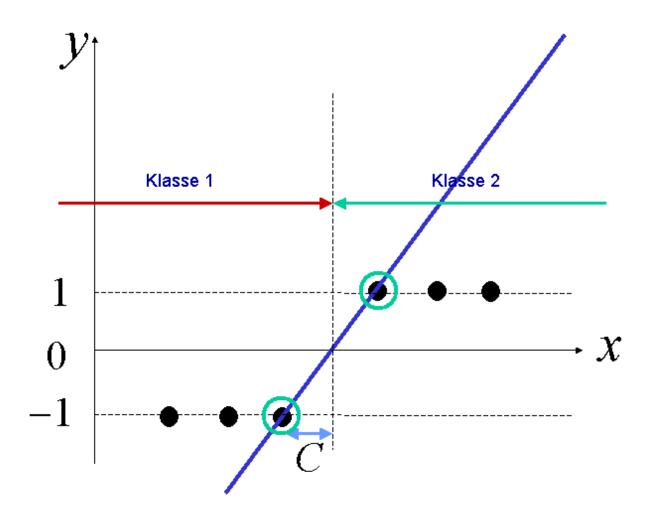
• The margin becomes

$$\mathcal{C} = \frac{1}{||\mathbf{\tilde{w}}_{opt}||}$$

• For the *support vectors* we have,

$$y_i(\mathbf{x}_i^T \mathbf{w}_{opt}) = 1$$

Optimal Separating Hyperplane (1D)



Optimization Problem

• The optimization problem is maximize

$$\tilde{\mathbf{w}}^T \tilde{\mathbf{w}}$$

under the constraint that $\forall i$

$$1 - y_i(\mathbf{x}_i^T \mathbf{w}) \le 0$$

• We get the Lagrangian

$$L_P = \frac{1}{2}\tilde{\mathbf{w}}^T\tilde{\mathbf{w}} + \sum_{i=1}^N \mu_i [1 - y_i(\mathbf{x}_i^T\mathbf{w})]$$

• The Lagrangian is minimized with respect to ${\bf w}$ and maximized with respect to $\mu_i \geq 0$ (saddle point solution)

Solution

• The problem is solved via the Wolfe Dual and the solution can be written as

$$\tilde{w} = \sum_{i=1}^{N} \mu_i y_i \tilde{x}_i = \sum_{i \in SV} \mu_i y_i \tilde{x}_i$$

Thus the sum is over over the terms where the Lagrange multiplier is not zero, i.e., the support vector

Also we can write the solution

$$h(x) = w_0 + \sum_{j=1}^{M-1} w_i x_i = w_0 + \sum_{i \in SV} y_i \mu_i \, \tilde{\mathbf{x}}_i^T \tilde{\mathbf{z}}$$

$$h(x) = \sum_{i \in SV} y_i \mu_i \ \tilde{\mathbf{x}}_i^T \tilde{\mathbf{x}} + w_0 = w_0 + \sum_{i \in SV} y_i \mu_i \ k(x_i, x)$$

Thus we get immediately a kernel solution with $k(x_i, x) = x_i^T x$.

- The solution can be written as a weighted sum over support vector kernels!
- Naturally, if one works with basis functions, one gets

$$k(\mathbf{z}, \mathbf{x}_i) = \phi(\mathbf{z})^T \phi(\mathbf{x}_i)$$

Non-separable Classes

- If classes are not linearly separable one needs to extend the approach. On introduces the so-called *slack* variables ξ_i .
- Find

$$\mathbf{w}_{opt} = \arg\min_{\mathbf{w}} \tilde{\mathbf{w}}^T \tilde{\mathbf{w}}$$

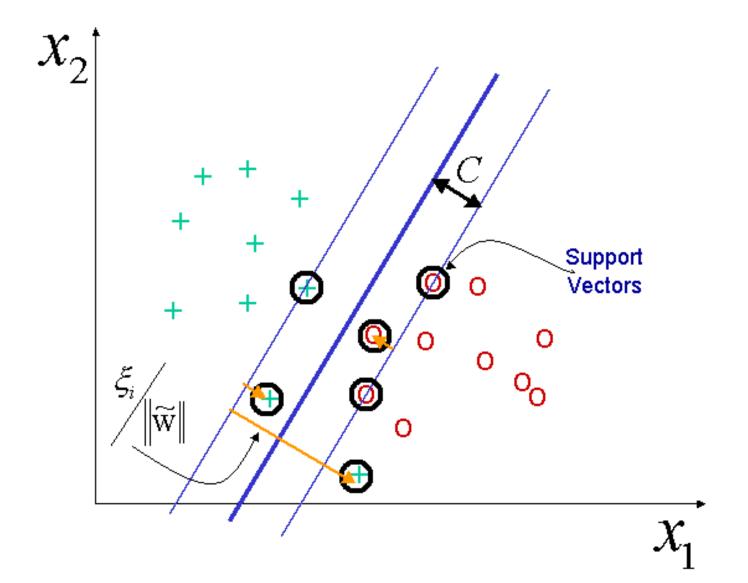
under the constraint that

$$y_i(\mathbf{x}_i^T\mathbf{w}) \ge 1 - \xi_i \quad i = 1, \dots, N$$

and

$$\xi_i \geq 0$$
 where $\sum_{i=1}^N \xi_i \leq 1/\gamma$

• The smaller $\gamma > 0$, the more slack is permitted. For $\gamma \to \infty$, one obtains the hard constraint



Optimization

- The optimal separating hyperplane is found via an evolved optimization of the quadratic cost function with linear constraints
- ullet γ is a hyperparameter

Optimization via Penalty Method

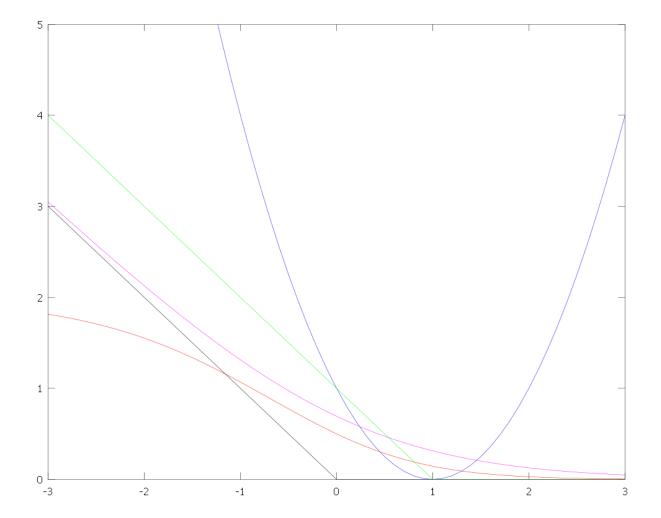
• We define

$$\arg\min_{\mathbf{w}} 2\gamma \sum |\mathbf{1} - y_i(\mathbf{x}_i^T\mathbf{w})|_+ + \tilde{\mathbf{w}}^T \tilde{\mathbf{w}}$$
 where $\sum |\mathbf{1} - y_i(\mathbf{x}_i^T\mathbf{w})|_+$ is the penalty term $P(w)$.. Here, $|arg|_+ = \max(arg, 0)$.

ullet With a finite γ , slack is permitted

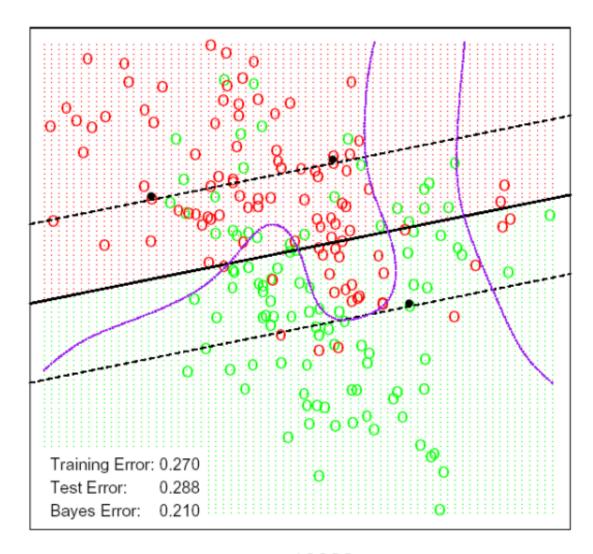
Comparison of Cost Functions

- We consider a data point of class 1 and the contribution of one data point to the cost function/negative log-likelihood
- The contribution to the cost is:
 - Least squares (blue) : $(1 h)^2$
 - Perceptron (black) $|-h|_+$
 - Vapnik's optimal hyperplane (green): $\gamma |1-h|_+$
 - Logistic Regression (magenta): log(1 + exp(-h))
 - Neural Network (red): $(1 sig(h))^2$



Toy Example

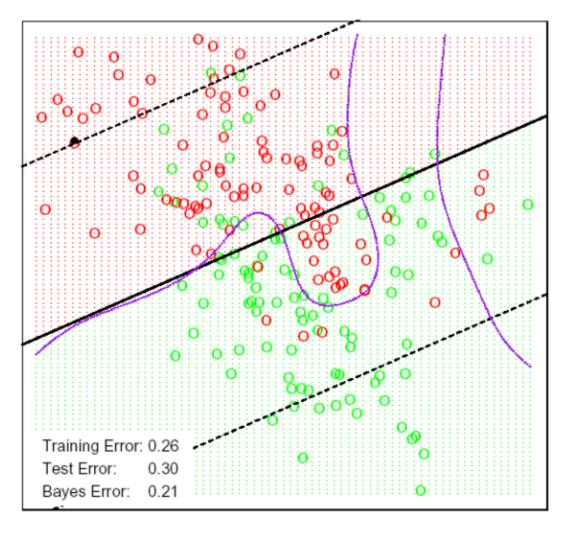
- Data for two classes (red, green) are generated
- Classes overlap
- The true class boundary is in violet
- The continuous line is the separating hyperplane found by the linear SVM
- All data points within the dotted region are support vectors (62% of all data points)
- ullet γ is large (little slack is permitted)



 $\gamma = 10000$

Toy Example (cont'd)

- \bullet Linear SVM with small γ : the solution has many more support vectors (85% of all data points)
- The test error is almost the same

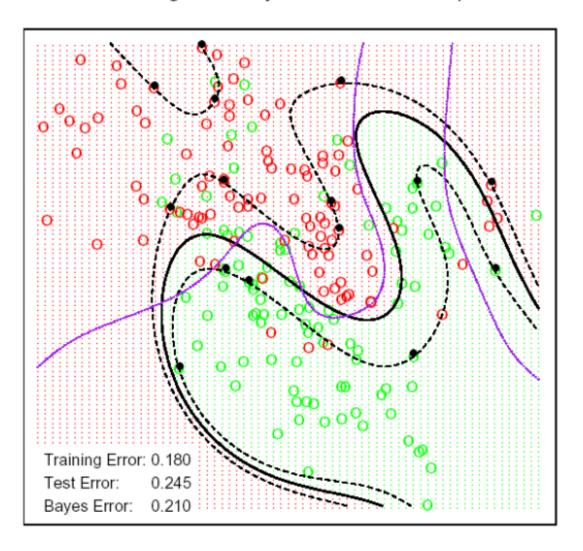


 $\gamma = 0.01$

Toy Example (cont'd)

- With polynomial kernels
- The test error is reduced since the fit is better
- Note that although the support vectors are close to the separating plane in the basis function space, this is not necessarily true in input space

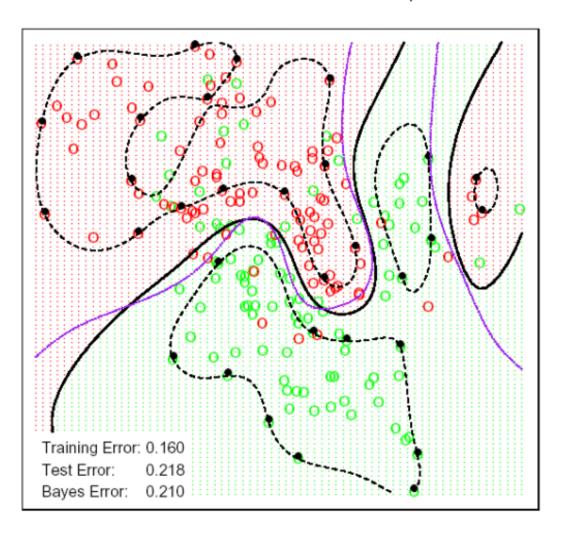
SVM - Degree-4 Polynomial in Feature Space



Toy Example (cont'd)

- Gaussian kernels give the best results
- Most data points are support vectors

SVM - Radial Kernel in Feature Space



Comments

• The ideas of searching for solutions with a large margin has been extended to many other problems