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e Let's consider a linear classifier with y; € {—1,1}
e If classes are linearly separable, the separating plane can be found

e Among all all solutions one chooses the one that maximizes the margin C






e [hus we want to find a classifier

y; = sign(h;)
with
M-1
j=0

e The following inequality constraints need to be fulfilled at the solution

yihi21 i:].,...,N

e Of all possible solutions, one chooses the one that maximizes the margin.

M-1

_ T : 2

Wopt = argmin - w = argmin E w3
=1



where W = (w1q,...,wps_1). (this means that in W the offset wq is missing);
Y; € {_17 1}

e The minimization is with respect to the complete w



e The margin becomes
1

||W0pt||

C —

e For the support vectors we have,

T
yi(Xz’ Wopt) =1



Klasse 1
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e The optimization problem is maximize
wiw
under the constraint that V2

1—y(xlw) <0

e We get the Lagrangian

1
Lp = QNTW_I' Zﬂz[l yz(X W)]

e The Lagrangian is minimized with respect to w and maximized with respect to p; > O

(saddle point solution)



e The problem is solved via the Wolfe Dual and the solution can be written as

N
D= ) piydi = Y iy
i=1

€SV
Thus the sum is over over the terms where the Lagrange multiplier is not zero, i.e.,

the support vector

e Also we can write the solution

M-1

~T~

h(z) =wo+ Y wm;=wo+ > Y X,
=1 €SV

h(z) = ) i % X+ wo =wo + Y yip; k(z;, z)
ieSV ieSV

Thus we get immediately a kernel solution with k(x;, ) = :UZT:U



e The solution can be written as a weighted sum over support vector kernels!

e Naturally, if one works with basis functions, one gets

k(z,%;) = ¢(2) o(x;)



e If classes are not linearly separable one needs to extend the approach. On introduces

the so-called slack variables &;.
e Find

Wopt = arg m“ifn wiw

under the constraint that
yi(XZTW) >1-¢& i=1,...,N
and
N
£ 20 where } & <1/y
1 =1

e The smaller v > O, the more slack is permitted. For v — oo, one obtains the hard

constraint






e The optimal separating hyperplane is found via an evolved optimization of the qua-

dratic cost function with linear constraints

® v is a hyperparameter
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e We define

: T ~T ~
arg min 272|1 — (X W) + W' w

where ) |1 — yi(x;‘;rw)|_|_ is the penalty term P(w)..

Here, |arg|4 = max(arg, 0).

e With a finite 7y, slack is permitted
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e \We consider a data point of class 1 and the contribution of one data point to the cost

function /negative log-likelihood
e The contribution to the cost is:
— Least squares (blue) : (1 — h)?
— Perceptron (black) | — k|
— Vapnik's optimal hyperplane (green): |1 — h|4
— Logistic Regression (magenta): log(1 4+ exp(—h))
— Neural Network (red): (1 — sig(h))?
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e Data for two classes (red, green) are generated

e C(lasses overlap

e The true class boundary is in violet

e The continuous line is the separating hyperplane found by the linear SVM

e All data points within the dotted region are support vectors (62% of all data points)

e - is large (little slack is permitted)
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Test Error: 0.288
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e Linear SVM with small ~: the solution has many more support vectors (85% of all

data points)

® [ he test error is almost the same
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e With polynomial kernels

e [ he test error is reduced since the fit is better

e Note that although the support vectors are close to the separating plane in the basis
function space, this is not necessarily true in input space
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SVM - Degree-4 Polynomial in Feature Space

Test Error: S
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e Gaussian kernels give the best results

e Most data points are support vectors
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SVM - Radial Kernel in Feature Space
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Training Error; 0.160
Test Error: 0.218
Bayes Eror;  0.210




e The ideas of searching for solutions with a large margin has been extended to many

other problems
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