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Summary

• Conditional probability:

P (y|x) =
P (x, y)

P (x)
with P (x) > 0

• Product rule

P (x, y) = P (x|y)P (y) = P (y|x)P (x)

• Chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)

• Bayes theorem

P (y|x) =
P (x, y)

P (x)
=

P (x|y)P (y)

P (x)
P (x) > 0
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• Marginal distribution

P (x) =
∑
y

P (x, y)

• Independent random variables

P (x, y) = P (x)P (y|x) = P (x)P (y)



Discrete Random Variables

• A random variable X(c) is a variable (more precisely a function), whose value

depends on the result of a random process

• Examples:

– c is a coin toss and X(c) = 1 if the result is head

– c is a person, randomly selected from the University of Munich. X(c) is the height

of that person

• A discrete random variable X can only assume a countable number of states.

Thus X = x with x ∈ {x1, x2, . . .}
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Discrete Random Variables (2)

• A probability distribution specifies with which probability a random variable assumes

a particular state

• A probability distribution of X can be defined via a probability function f(x):

P (X = x) = P ({c : X(c) = x}) = f(x)

• f(x) is the probability function and x is a realisation of X

• One often writes

f(x) = PX(x) = P (x)
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Elementary / Atomic Events

• In statistics, one attempts to derive the probabilities from data (machine learning)

• In probability one assumes either that some probabilities are known, or that they can

be derived from some atomic events

• Atomic event: using some basic assumptions (symmetry, neutrality of nature, fair

coin, ...) one assumes the probabilities for some elementary events
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Example: Toss of a Fair Coin

• Atomic events: c = {h, t}

• The probability of each elementary event is 1/2

• X(c) is a random variable that is equal to one if the result is head and is zero

otherwise

• P (X = 1) = 0.5
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Example: Two Tosses of a Fair Coin

• Atomic event: results of two tosses

• c = {(hh), (ht), (th), (tt)}

• The probability for each elementary event is 1/4

• X(c) is a random variable that is equal to one if the result of the first is head

• P (X = 1) = 1/4P (h, h) + 1/4P (h, t) = 1/2
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Multivariate Probability Distributions

• Define two random variables X(c) and Y (c). A multivariate distribution is de-

fined as:

P (x, y) = P (X = x, Y = y) = P (X = x ∧ Y = y)

= P ({c : X(c) = x ∧ Y (c) = y})
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Example: Two Coin Tosses

• X(c) is a random variable that is equal to one if the result of the first toss is head

• Y (c) is a random variable that is equal to one if the result of the second toss is head

• P (X = 1) = 1/2, P (Y = 1) = 1/2,

P (X = 1, Y = 1) = P (X = 1, Y = 1) = P (X = 1 ∧ Y = 1)

= P ({c : X(c) = 1 ∧ Y (c) = 1}) = 1/4
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Special Cases

• If two random variables are independent, then P (X,Y ) = P (X)P (Y ). Example:

the two random variables in the previous example

• Some states of random variables can be mutually exclusive:

– Z(c) is a random variable that is equal to one if the result of the first toss is tail

P (X = 1, Z = 1) = 0

• Mutual exclusive and collectively exhaustive: if two random variables are mutually

exclusive and, in addition, P (X = 1) +P (Z = 1) = 1. Examples: everyone has

exactly one height

10



Which Random Variables?

• It should be clear from the discussion that the definition of random variables in a

domain is up to the researcher, although there is often a“natural”choice (height of a

person, income of a person, age of a person, ...)

• Example: In a dice experiment, we can define binary random variables for each of the

six results X1, . . . , X6 or we define only one random variable with six states X = x,

with x ∈ {1,2,3,4,5,6}
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Conditional Distribution

• I am interested in the probability distribution of the random variable Y but consi-

der only atomic events, where X = x. Example: I am interested in the probability

distribution of height, but only for teenagers

• Definition of a conditional probability distribution

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
with P (X = x) > 0

• The distribution is identical to the one for the unconditional case, only that I have to

divide by P (X = x) (re-normalize)
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Product Rule and Chain Rule

• It follows: product rule

P (x, y) = P (x|y)P (y) = P (y|x)P (x)

• and chain rule

P (x1, . . . , xM) = P (x1)P (x2|x1)P (x3|x1, x2) . . . P (xM |x1, . . . , xM−1)
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Bayes Theorem

• Bayes Theorem

P (y|x) =
P (x, y)

P (x)
=

P (x|y)P (y)

P (x)
P (x) > 0
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Disjunction

• Recall that P (X = x, Y = y) = P (X = x ∧ Y = y) is the probability for a

conjunction

• We get for the disjunction

P (X = x ∨ Y = y) =

P (X = x, Y = y) + P (X = x, Y 6= y) + P (X 6= x, Y = y) =

[P (X = x, Y = y) + P (X = x, Y 6= y)] + [P (X = x, Y = y) + P (X 6= x, Y = y)]

−P (X = x, Y = y)

= P (X = x) + P (Y = y)− P (X = x, Y = y)

is the probability for a disjunction

• If states are mutually exclusive, P (X = x, Y = y) = 0, and

P (X = x ∨ Y = y) = P (X = x) + P (Y = y)
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Marginal Distribution

• The marginal distribution can be calculated from a joint disctribution as:

P (X = x) =
∑
y

P (X = x, Y = y)
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Marginalization and Conditioning: Basis for Probabilistic
Inference

• P (I, F, S) where I = 1 stands for influenza, F = 1 stands for fever, S = 1

stands for sneezing

• What is the probability for influenza, when the patient is sneezing, but temperature is

unknown?

• Thus I need (conditioning) P (I = 1|S = 1) = P (I = 1, S = 1)/P (S = 1)

• I calculate via marginalization

P (I = 1, S = 1) =
∑
f

P (I = 1, F = f, S = 1)

P (S = 1) =
∑
i

P (I = i, S = 1)
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Independent Random Variables

• Independence: two random variables are independent, if,

P (x, y) = P (x)P (y|x) = P (x)P (y)

• It follows for independent random variables,

P (X = x ∨ Y = y) = P (X = x) + P (Y = y)− P (X = x)P (Y = y)
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Expected Values

• Expected value

E(X) = EP (x)(X) =
∑
i

xiP (X = xi)
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Variance

• The Variance of a random variable is:

var(X) =
∑
i

(xi − E(X))2P (X = xi)
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Covariance

• Covariance:

cov(X,Y ) =
∑
i

∑
j

(xi − E(X))(yj − E(Y ))P (X = xi, Y = yj)

• Covariance matrix:

Σ[XY ],[XY ] =

(
var(X) cov(X,Y )

cov(Y,X) var(Y )

)

21



Correlation

• Useful identity:

cov(X,Y ) = E(XY )− E(X)E(Y )

where E(XY ) is the correlation.

Correlation coefficient (confusing naming!) is

r =
cov(X,Y )√

var(X)
√

var(Y )
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Continuous Random Variables

• Probability density

f(x) = lim
∆x→0

P (x ≤ X ≤ x + ∆x)

∆x

• Thus

P (a < x < b) =

∫ b

a
f(x)dx

• The distribution function is

F (x) =

∫ x

−∞
f(x)dx = P (X ≤ x)
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Expectations for Continuous Variables

• Expected value

E(X) = EP (x)(X) =

∫
xP (x)dx

• Variance

var(X) =

∫
(x− E(x))2P (x)dx

• Covariance:

cov(X,Y ) =

∫
(x− E(X))(y − E(Y ))P (x, y)dxdy
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