Some Concepts of Probability (Review)

Volker Tresp

Summer 2014

Summary

- Conditional probability:

$$
P(y \mid x)=\frac{P(x, y)}{P(x)} \text { with } P(x)>0
$$

- Product rule

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)
$$

- Chain rule

$$
P\left(x_{1}, \ldots, x_{M}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots P\left(x_{M} \mid x_{1}, \ldots, x_{M-1}\right)
$$

- Bayes theorem

$$
P(y \mid x)=\frac{P(x, y)}{P(x)}=\frac{P(x \mid y) P(y)}{P(x)} \quad P(x)>0
$$

- Marginal distribution

$$
P(x)=\sum_{y} P(x, y)
$$

- Independent random variables

$$
P(x, y)=P(x) P(y \mid x)=P(x) P(y)
$$

Discrete Random Variables

- A random variable $X(c)$ is a variable (more precisely a function), whose value depends on the result of a random process
- Examples:
$-c$ is a coin toss and $X(c)=1$ if the result is head
- c is a person, randomly selected from the University of Munich. $X(c)$ is the height of that person
- A discrete random variable X can only assume a countable number of states. Thus $X=x$ with $x \in\left\{x_{1}, x_{2}, \ldots\right\}$

Discrete Random Variables (2)

- A probability distribution specifies with which probability a random variable assumes a particular state
- A probability distribution of X can be defined via a probability function $f(x)$:

$$
P(X=x)=P(\{c: X(c)=x\})=f(x)
$$

- $f(x)$ is the probability function and x is a realisation of X
- One often writes

$$
f(x)=P_{X}(x)=P(x)
$$

Elementary / Atomic Events

- In statistics, one attempts to derive the probabilities from data (machine learning)
- In probability one assumes either that some probabilities are known, or that they can be derived from some atomic events
- Atomic event: using some basic assumptions (symmetry, neutrality of nature, fair coin, ...) one assumes the probabilities for some elementary events

Example: Toss of a Fair Coin

- Atomic events: $c=\{h, t\}$
- The probability of each elementary event is $1 / 2$
- $X(c)$ is a random variable that is equal to one if the result is head and is zero otherwise
- $P(X=1)=0.5$

Example: Two Tosses of a Fair Coin

- Atomic event: results of two tosses
- $c=\{(h h),(h t),(t h),(t t)\}$
- The probability for each elementary event is $1 / 4$
- $X(c)$ is a random variable that is equal to one if the result of the first is head
- $P(X=1)=1 / 4 P(h, h)+1 / 4 P(h, t)=1 / 2$

Multivariate Probability Distributions

- Define two random variables $X(c)$ and $Y(c)$. A multivariate distribution is defined as:

$$
\begin{aligned}
P(x, y) & =P(X=x, Y=y)=P(X=x \wedge Y=y) \\
& =P(\{c: X(c)=x \wedge Y(c)=y\})
\end{aligned}
$$

Example: Two Coin Tosses

- $X(c)$ is a random variable that is equal to one if the result of the first toss is head
- $Y(c)$ is a random variable that is equal to one if the result of the second toss is head
- $P(X=1)=1 / 2, P(Y=1)=1 / 2$,

$$
\begin{gathered}
P(X=1, Y=1)=P(X=1, Y=1)=P(X=1 \wedge Y=1) \\
=P(\{c: X(c)=1 \wedge Y(c)=1\})=1 / 4
\end{gathered}
$$

Special Cases

- If two random variables are independent, then $P(X, Y)=P(X) P(Y)$. Example: the two random variables in the previous example
- Some states of random variables can be mutually exclusive:
- $Z(c)$ is a random variable that is equal to one if the result of the first toss is tail $P(X=1, Z=1)=0$
- Mutual exclusive and collectively exhaustive: if two random variables are mutually exclusive and, in addition, $P(X=1)+P(Z=1)=1$. Examples: everyone has exactly one height

Which Random Variables?

- It should be clear from the discussion that the definition of random variables in a domain is up to the researcher, although there is often a "natural" choice (height of a person, income of a person, age of a person, ...)
- Example: In a dice experiment, we can define binary random variables for each of the six results X_{1}, \ldots, X_{6} or we define only one random variable with six states $X=x$, with $x \in\{1,2,3,4,5,6\}$

Conditional Distribution

- I am interested in the probability distribution of the random variable Y but consider only atomic events, where $X=x$. Example: I am interested in the probability distribution of height, but only for teenagers
- Definition of a conditional probability distribution

$$
P(Y=y \mid X=x)=\frac{P(X=x, Y=y)}{P(X=x)} \text { with } P(X=x)>0
$$

- The distribution is identical to the one for the unconditional case, only that I have to divide by $P(X=x)$ (re-normalize)

Product Rule and Chain Rule

- It follows: product rule

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)
$$

- and chain rule

$$
P\left(x_{1}, \ldots, x_{M}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots P\left(x_{M} \mid x_{1}, \ldots, x_{M-1}\right)
$$

Bayes Theorem

- Bayes Theorem

$$
P(y \mid x)=\frac{P(x, y)}{P(x)}=\frac{P(x \mid y) P(y)}{P(x)} \quad P(x)>0
$$

Disjunction

- Recall that $P(X=x, Y=y)=P(X=x \wedge Y=y)$ is the probability for a conjunction
- We get for the disjunction

$$
\begin{gathered}
P(X=x \vee Y=y)= \\
P(X=x, Y=y)+P(X=x, Y \neq y)+P(X \neq x, Y=y)= \\
{[P(X=x, Y=y)+P(X=x, Y \neq y)]+[P(X=x, Y=y)+P(X \neq x, Y=y)]} \\
-P(X=x, Y=y) \\
=P(X=x)+P(Y=y)-P(X=x, Y=y)
\end{gathered}
$$

is the probability for a disjunction

- If states are mutually exclusive, $P(X=x, Y=y)=0$, and

$$
P(X=x \vee Y=y)=P(X=x)+P(Y=y)
$$

Disjunction

Marginal Distribution

- The marginal distribution can be calculated from a joint disctribution as:

$$
P(X=x)=\sum_{y} P(X=x, Y=y)
$$

Marginalization and Conditioning: Basis for Probabilistic Inference

- $P(I, F, S)$ where $I=1$ stands for influenza, $F=1$ stands for fever, $S=1$ stands for sneezing
- What is the probability for influenza, when the patient is sneezing, but temperature is unknown?
- Thus I need (conditioning) $P(I=1 \mid S=1)=P(I=1, S=1) / P(S=1)$
- I calculate via marginalization

$$
\begin{gathered}
P(I=1, S=1)=\sum_{f} P(I=1, F=f, S=1) \\
P(S=1)=\sum_{i} P(I=i, S=1)
\end{gathered}
$$

Independent Random Variables

- Independence: two random variables are independent, if,

$$
P(x, y)=P(x) P(y \mid x)=P(x) P(y)
$$

- It follows for independent random variables,

$$
P(X=x \vee Y=y)=P(X=x)+P(Y=y)-P(X=x) P(Y=y)
$$

Expected Values

- Expected value

$$
E(X)=E_{P(x)}(X)=\sum_{i} x_{i} P\left(X=x_{i}\right)
$$

Variance

- The Variance of a random variable is:

$$
\operatorname{var}(X)=\sum_{i}\left(x_{i}-E(X)\right)^{2} P\left(X=x_{i}\right)
$$

Covariance

- Covariance:

$$
\operatorname{cov}(X, Y)=\sum_{i} \sum_{j}\left(x_{i}-E(X)\right)\left(y_{j}-E(Y)\right) P\left(X=x_{i}, Y=y_{j}\right)
$$

- Covariance matrix:

$$
\Sigma_{[X Y],[X Y]}=\left(\begin{array}{cc}
\operatorname{var}(X) & \operatorname{cov}(X, Y) \\
\operatorname{cov}(Y, X) & \operatorname{var}(Y)
\end{array}\right)
$$

Correlation

- Useful identity:

$$
\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

where $E(X Y)$ is the correlation.
Correlation coefficient (confusing naming!) is

$$
r=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}}
$$

Continuous Random Variables

- Probability density

$$
f(x)=\lim _{\Delta x \rightarrow 0} \frac{P(x \leq X \leq x+\Delta x)}{\Delta x}
$$

- Thus

$$
P(a<x<b)=\int_{a}^{b} f(x) d x
$$

- The distribution function is

$$
F(x)=\int_{-\infty}^{x} f(x) d x=P(X \leq x)
$$

Expectations for Continuous Variables

- Expected value

$$
E(X)=E_{P(x)}(X)=\int x P(x) d x
$$

- Variance

$$
\operatorname{var}(X)=\int(x-E(x))^{2} P(x) d x
$$

- Covariance:

$$
\operatorname{cov}(X, Y)=\int(x-E(X))(y-E(Y)) P(x, y) d x d y
$$

